【题目】如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交
于点E,以点O为圆心,OC的长为半径作
交OB于点D.若OA=2,则阴影部分的面积为 . ![]()
参考答案:
【答案】
+ ![]()
【解析】解:连接OE、AE, ![]()
∵点C为OA的中点,
∴∠CEO=30°,∠EOC=60°,
∴△AEO为等边三角形,
∴S扇形AOE=
=
π,
∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣S△COE)
=
﹣
﹣(
π﹣
×1×
)
=
π﹣
π+
=
+
.
故答案为:
+
.
连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC即可求出阴影部分的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】你能求(x-1)(x99+x98+x97+…+x+1)的值吗?
遇到这样的问题,我们可以先思考一下,从简单的情形入手.
分别计算下列各式的值:
(1)(x﹣1)(x+1)=x2﹣1;
(2)(x﹣1)(x2+x+1)=x3﹣1;
(3)(x﹣1)(x3+x2+x+1)=x4﹣1;
…
由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)= _________ ;
请你利用上面的结论,完成下面两题的计算:
(1)299+298+297+…+2+1;
(2)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是( )

A. (0,4)→(0,0)→(4,0)
B. (0,4)→(4,4)→(4,0)
C. (0,4)→(3,4)→(4,2)→(4,0)
D. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理过程,请填空.

解:∵OA⊥OB(已知)
所以_____=90°(________)
因为_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代换)
所以______=90°
所以OC⊥OD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB,CD 相交于点O,∠AOD=3∠BOD+20°.
(1)求∠BOD的度数;
(2)以O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】政府计划投资14万亿元实施东进战略.为了解民对东进战略的关注情况,佳佳随机采访部分民,并对采访情况制作了统计图表的一部分如下:
关注情况
频数
频率
A.高度关注
m
0.1
B.一般关注
200
0.5
C.不关注
60
n
D.不知道
100
0.25
(1)采访总人数为__ __人,m=__ __,n=__ __;
(2)补全统计图;
(3)估计在30 000名民中高度关注东进战略的人数约为 人.

相关试题