【题目】如图,小明从家到达学校要穿过一个居民小区,小区的道路均是正南或正东方向,则小明走下列线路不能到达学校的是( )
![]()
A. (0,4)→(0,0)→(4,0)
B. (0,4)→(4,4)→(4,0)
C. (0,4)→(3,4)→(4,2)→(4,0)
D. (0,4)→(1,4)→(1,1)→(4,1)→(4,0)
参考答案:
【答案】C
【解析】
根据点的坐标的定义结合图形对各选项分析判断即可得解.
A、(0,4)→(0,0)→(4,0)都能到达,故本选项错误;
B、(0,4)→(4,4)→(4,0)都能到达,故本选项错误;
C、(3,4)→(4,2)不都能到达,故本选项正确;
D、(0,4)→(1,4)→(1,1)→(4,1)→(4,0)都能到达,故本选项错误.
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,
探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为 .
探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为xm,宽为ym,
(1)用含x、y的代数式表示正方形的边长为 ;
(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD中,E是CD上的一点连接AE、BE,如图给出四个条件:①AE平分∠BAD,②BE平分∠ABC,③AE⊥EB,④AB=AD+BC,请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】你能求(x-1)(x99+x98+x97+…+x+1)的值吗?
遇到这样的问题,我们可以先思考一下,从简单的情形入手.
分别计算下列各式的值:
(1)(x﹣1)(x+1)=x2﹣1;
(2)(x﹣1)(x2+x+1)=x3﹣1;
(3)(x﹣1)(x3+x2+x+1)=x4﹣1;
…
由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)= _________ ;
请你利用上面的结论,完成下面两题的计算:
(1)299+298+297+…+2+1;
(2)(﹣2)50+(﹣2)49+(﹣2)48+…+(﹣2)+1.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.
(1)求证:△BAD≌△CAE;
(2)试猜想BD、CE有何特殊位置关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交
于点E,以点O为圆心,OC的长为半径作
交OB于点D.若OA=2,则阴影部分的面积为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理过程,请填空.

解:∵OA⊥OB(已知)
所以_____=90°(________)
因为_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,
所以______=_____(等量代换)
所以______=90°
所以OC⊥OD.
相关试题