【题目】如图,在ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.
![]()
参考答案:
【答案】(1)证明见解析;(2)CD=
.
【解析】
(1)由题意可证四边形DFBE是平行四边形,且DE⊥AB,可得结论;(2)根据直角三角形的边角关系可求DE的长度,则可得BF的长度,即可求CD的长度.
证明(1)∵四边形ABCD是平行四边形,
∴DC∥AB,DC=AB,
∵CF=AE
∴DF=BE且DC∥AB,
∴四边形DFBE是平行四边形,
又∵DE⊥AB,
∴四边形DFBE是矩形.
(2)∵∠DAB=60°,AD=3,DE⊥AB,
∴AE=
,DE=
AE=![]()
∵四边形DFBE是矩形
∴BF=DE=![]()
∵AF平分∠DAB
∴∠FAB=
∠DAB=30°,且BF⊥AB
∴AB=
BF=![]()
∴CD=![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,所有小正方形的边长都为1,A、B、C都在格点上.
(1)过点C画直线AB的平行线(不写画法,下同);
(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.
(3)线段_____的长度是点A到直线BC的距离;
(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2(2-5)+1=2(-3)+1=-6+1=-5.
(1)求(-2)⊕3的值
(2)若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).

①请画出△ABC关于x轴对称的△A1B1C1 , 并写出点A1的坐标;
②请画出△ABC绕点B逆时针旋转90°后的△A2BC2 , 并写出点A2、C2的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠BOE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,过点D作DE⊥BD交BA的延长线于点E.
(1)当ABCD是菱形时,证明:AE=AB;
(2)当ABCD是矩形时,设∠E=α,问:∠E与∠DOA满足什么数量关系?写出结论并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3 , 现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
租金(单位:元/台时)
挖掘土石方量(单位:m3/台时)
甲型挖掘机
100
60
乙型挖掘机
120
80
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?
相关试题