【题目】如图,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠BOE的度数.
![]()
参考答案:
【答案】75°
【解析】试题分析:根据矩形的性质和角平分线的定义可得∠BAE=45°,再由∠CAE=15°,可求得∠BAOE=60°,可判定△AOB为等边三角形,即可得OB=AB,再证得AB=BE,即可得OB=BE,从而求得∠BOE的度数.
试题解析:
解:在矩形ABCD中,∵AE平分∠BAD,
∴∠BAE=45°
又∵∠CAE=15°
∴∠BAO=∠BAE+∠CAE=60°,
∴△AOB为等边三角形,
∴OB=AB,∠ABO=60°,
∴∠OBE=∠ABC-∠ABO=90°-60°=30°
∵∠BAE=45°,∠BEA=45°,
∴AB=BE,OB=BE
∴∠BOE=75°
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如: 2⊕5=2(2-5)+1=2(-3)+1=-6+1=-5.
(1)求(-2)⊕3的值
(2)若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).

①请画出△ABC关于x轴对称的△A1B1C1 , 并写出点A1的坐标;
②请画出△ABC绕点B逆时针旋转90°后的△A2BC2 , 并写出点A2、C2的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF.
(1)求证:四边形BFDE是矩形;
(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,过点D作DE⊥BD交BA的延长线于点E.
(1)当ABCD是菱形时,证明:AE=AB;
(2)当ABCD是矩形时,设∠E=α,问:∠E与∠DOA满足什么数量关系?写出结论并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m3 , 现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如下表所示:
租金(单位:元/台时)
挖掘土石方量(单位:m3/台时)
甲型挖掘机
100
60
乙型挖掘机
120
80
(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?
(2)如果每小时支付的租金不超过850元,又恰好完成每小时的挖掘量,那么共有哪几种不同的租用方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程x2+3x+
=0有两个不相等的实数根.
(1)求m的取值范围;
(2)若m为符合条件的最大整数,求此时方程的根.
相关试题