【题目】如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=4,则AE的长为( ) ![]()
A.![]()
B.2 ![]()
C.3 ![]()
D.4 ![]()
参考答案:
【答案】B
【解析】解:连结EF,AE与BF交于点O,如图 ∵AB=AF,AO平分∠BAD,
∴AO⊥BF,BO=FO=
BF=3,
∵四边形ABCD为平行四边形,
∴AF∥BE,
∴∠1=∠3,
∴∠2=∠3,
∴AB=EB,
∵BO⊥AE,
∴AO=OE,
在Rt△AOB中,AO=
=
=
,
∴AE=2AO=2
.
故选B.![]()
【考点精析】本题主要考查了平行四边形的性质的相关知识点,需要掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品售后,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:
销售量n(件)
n=50﹣x
销售单价m(元/件)
当1≤x≤20时,m=20+
x当21≤x≤30时,m=10+

(1)请计算第几天该商品单价为25元/件?
(2)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;
(3)这30天中第几天获得的利润最大?最大利润是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,在斜边AB上取一点D,过点D作DE∥BC,交AC于点E,现将△ADE绕点A旋转一定角度到如图2所示的位置(点D在△ABC的内部),使得∠ABD+∠ACD=90°.

(1)①求证:△ABD∽△ACE;
②若CD=1,BD=
,求AD的长.
(2)如图3,将原题中的条件“AC=BC”去掉,其它条件不变,设
=
=k,若CD=1,BD=2,AD=3,求k的值.
(3)如图4,将原题中的条件“∠ACB=90°”去掉,其它条件不变,若
=
=
,设CD=m,BD=n,AD=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面内直角坐标系中,直线y=2x+4分别交x轴,y轴于点A,C,点D(m,2)在直线AC上,点B在x轴正半轴上,且OB=3OC,点E是y轴上任意一点,记点E为(0,n).

(1)求点D的坐标及直线BC的解析式;
(2)连结DE,将线段DE绕点D按顺时针旋转90°得线段DG,作正方形DEFG,是否存在n的值,使正方形的顶点F落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.
(3)作点E关于AC的对称点E′,当n为何值时,AE′分别与AC,BC,AB垂直? -
科目: 来源: 题型:
查看答案和解析>>【题目】为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100 , 则3M=3+32+33+34+…+3101 , 因此,3M﹣M=3101﹣1,所以M=
,即1+3+32+33+…+3100=
,仿照以上推理计算:1+5+52+53+…+52015的值是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】当前,“校园ipad现象已经受到社会的广泛关注,某教学兴趣小组对”“是否赞成中学生带手机进校园”的问题进行了社会调查.小文将调查数据作出如下不完整的整理: 频数分布表
看法
频数
频率
赞成
5
无所谓
0.1
反对
40
0.8

(1)请求出共调查了多少人;并把小文整理的图表补充完整;
(2)小丽要将调查数据绘制成扇形统计图,则扇形图中“赞成”的圆心角是多少度?
(3)若该校有3000名学生,请您估计该校持“反对”态度的学生人数. -
科目: 来源: 题型:
查看答案和解析>>【题目】学校运动会上,九(1)班啦啦队买了两种矿泉水,其中甲种矿泉水共花费80元,乙种矿泉水共花费60元.甲种矿泉水比乙种矿泉水多买20瓶,且乙种矿泉水的价格是甲种矿泉水价格的1.5倍.求甲、乙两种矿泉水的价格.
相关试题