【题目】如图,下列关系错误的是( )
![]()
A. ∠AOC=∠AOB+∠BOC
B. ∠AOC=∠AOD-∠COD
C. ∠AOC=∠AOB+∠BOD-∠BOC
D. ∠AOC=∠AOD-∠BOD+∠BOC
参考答案:
【答案】C
【解析】
仔细观察图形,很容易得出∠AOC=∠AOB+∠BOC,∠AOC=AOD-∠COD;接下来再根据∠BOC=∠BOD-∠COD,∠COD=∠BOD-BOC即可得出答案.
A、∠AOC=∠AOB+∠BOC,正确,故A选项不符合题意;
B、∠AOC=∠AOD-∠COD,正确,故B选项不符合题意;
C、∠AOD=∠AOB+∠BOD,错误,故C选项符合题意;
D、∠AOC=∠AOD-∠BDO+∠BOC,正确,故D选项不符合题意.
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD的两边长AB=18cm,AD=4cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2cm的速度匀速运动,Q在边BC上沿BC方向以每秒1cm的速度匀速运动,当一点到达终点时,另一点也停止运动.设运动时间为x秒,△PBQ的面积为y(cm2).

(1)求y关于x的函数关系式,并写出x的取值范围;
(2)求△PBQ的面积的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某商场销售每个进价为150元和120元的A、B两种型号的足球,如表是近两周的销售情况:
销售时段
销售数量
销售收入
A种型号
B种型号
第一周
3个
4个
1200元
第二周
5个
3个
1450元
进价、售价均保持不变,利润
销售收入
进货成本
(1)求A、B两种型号的足球的销售单价;
(2)若商场准备用不多于8400元的金额再购进这两种型号的足球共60个,求A种型号的足球最多能采购多少个?
(3)在
的条件下,商场销售完这60个足球能否实现利润超过2550元,若能,请给出相应的采购方案;若不能请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).

(1)连接 ;
(2)猜想: = ;
(3)证明:
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图(1),已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连接EB,过点A作AM⊥BE,垂足为M,AM交BD于点F.

(1)求证:OE=OF;
(2)如图(2),若点E在AC的延长线上,AM⊥BE于点M,交DB的延长线于点F,其他条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.
小明做了如下操作:
将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:
(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;
(2)连接EF,CD,如图③,求证:四边形CDEF是平行四边形. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,有点A(0,4)、B(9,4)、C(12,0)。已知点P从点A出发沿AB路线向点B运动,点Q从点C出发沿CO路线向点O运动,运动速度都是每秒一个单位长度,运动时间为t秒.
(1)当四边形AQCB是平行四边形时,求t值;
(2)连接PQ,当四边形APQO是矩形时,求t值.

相关试题