【题目】如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=
(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.![]()
(1)求k的值及点E的坐标;
(2)若点F是边上一点,且△BCF∽△EBD,求直线FB的解析式.
参考答案:
【答案】
(1)
解:在矩形OABC中,
∵B(4,6),
∴BC边中点D的坐标为(2,6),
∵又曲线y=
的图象经过点(2,6),
∴k=12,
∵E点在AB上,
∴E点的横坐标为4,
∵y=
经过点E,
∴E点纵坐标为3,
∴E点坐标为(4,3)
(2)
解:由(1)得,BD=2,BE=3,BC=4,
∵△FBC∽△DEB,
∴
=
,即
=
,
∴CF=
,
∴OF=
,即点F的坐标为(0,
),
设直线FB的解析式为y=kx+b,而直线FB经过B(4,6),F(0,
),
∴
,解得
,
∴直线BF的解析式为y=
x+ ![]()
【解析】(1)由条件可先求得点D的坐标,代入反比例函数可求得k的值,又由点E的位置可求得E点的横坐标,代入可求得E点坐标;(2)由相似三角形的性质可求得CF的长,可求得OF,则可求得F点的坐标,利用待定系数法可求得直线FB的解析式.
【考点精析】本题主要考查了反比例函数的图象和反比例函数的性质的相关知识点,需要掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点并说明理由.
(2)如图2,在∠AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点,并说明理由.
(3)如图3,在∠AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,若BE=1,CE=2,则折痕FG的长度为( )

A.
B.2
C.3
D.4 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图:在长度为1个单位的小正方形组成的网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)△ABC的面积为________;
(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为________个单位长度.(在图形中标出点P)

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料并解答下列问题.
你知道吗?一些代数恒等式可以用平面图形的面积来表示,例如(2a+b)(a+b)=2a2+3ab+b2就可以用图甲中的①或②的面积表示.
(1)请写出图乙所表示的代数恒等式;
(2)画出一个几何图形,使它的面积能表示(a+b)(a+3b)=a2+4ab+3b2;
(3)请仿照上述式子另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在风速为25 km/h的条件下,一架飞机顺风从A机场飞到B机场要用5.6h,它逆风飞行同样的航线要用6h.求:
(1)无风时这架飞机在这一航线的平均航速;
(2)两机场之间的航程是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABO中,∠OAB=Rt∠,点A在x轴的正半轴,点B在第一象限,C,D分别是BO,BA的中点,点E在CD的延长线上.若函数y1=
(x>0)的图象经过B,E,函数y2=
(x>0)的图象过点C,且△BCE的面积为1,则k2的值为( ) 
A.
B.
C.3
D.
相关试题