【题目】如图,二次函数
的图象与y轴正半轴相交,其顶点坐标为(
,1),下列结论:①abc>0;②a=b;③a=4c﹣4;④方程
有两个相等的实数根,其中正确的结论是______.(只填序号即可).
![]()
参考答案:
【答案】③④.
【解析】解:①∵根据图示知,抛物线开口方向向下,∴a<0.
由对称轴在y轴的右侧知b>0,∵抛物线与y轴正半轴相交,∴c>0,∴abc<0.故①错误;
②∵抛物线的对称轴直线x=
,∴a=﹣b.故②错误;
③∵该抛物线的顶点坐标为(
,1),∴1=
,∴b2﹣4ac=﹣4a.∵b=﹣a,∴a2﹣4ac=﹣4a,∵a≠0,等式两边除以a,得a﹣4c=﹣4,即a=4c﹣4.故③正确;
④∵二次函数
的最大值为1,即
,∴方程
有两个相等的实数根.故④正确.
综上所述,正确的结论有③④.
故答案为:③④.
-
科目: 来源: 题型:
查看答案和解析>>【题目】解下列方程
(1)﹣3x﹣5=23+2x
(2)3x﹣7(x﹣1)=2﹣3(x+3)
(3)

(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】18世纪最杰出的瑞士数学家欧拉,最先把关于x的多项式用符号“f(x)”表示,如f(x)=﹣3x2+2x﹣1,把x=﹣2时多项式的值表示为f(﹣2),则f(﹣2)=_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把
记作
,读作“a的圈n次方” 请你阅读以上材料并完成下列问题:
(1)直接写出计算结果:3⑧= ,
= . (2)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?仔细思考,将下列运算结果直接写成幂的形式.5⑦= ;(﹣2)⑩= ;(﹣
)⑨= .(3)计算:

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,有一个等腰直角三角形AOB,∠OAB=90°,直角边AO在x轴上,且AO=1.将Rt△AOB绕原点O顺时针旋转90°得到等腰直角三角形A1OB1,且A1O=2AO,再将Rt△A1OB1绕原点O顺时针旋转90°得到等腰三角形A2OB2,且A2O=2A1O……依此规律,得到等腰直角三角形A2 017OB2 017.则点B2 017的坐标( )

A. (22 017,-22 017) B. (22 016,-22 016) C. (22 017,22 017) D. (22 016,22 016)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△OA0A1在平面直角坐标系内,∠OA0A1=90°,∠A0OA1=30°,以OA1为直角边向外作Rt△OA1A2,使∠OA1A2=90°,∠A1OA2=30°,以OA2为直角边向外作Rt△OA2A3,使∠OA2A3=90°,∠A2OA3=30°,按此方法进行下去,得到Rt△OA3A4,Rt△OA4A5,…,Rt△OA2016A2017,若点A0(1,0),则点A2017的横坐标为______.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上A,B两点对应的数分别为a,b,且a,b满足|a+20|=﹣(b﹣13)2,点C对应的数为16,点D对应的数为﹣13.
(1)求a,b的值;
(2)点A,B沿数轴同时出发相向匀速运动,点A的速度为6个单位/秒,点B的速度为2个单位/秒,若t秒时点A到原点的距离和点B到原点的距离相等,求t的值;
(3)在(2)的条件下,点A,B从起始位置同时出发.当A点运动到点C时,迅速以原来的速度返回,到达出发点后,又折返向点C运动.B点运动至D点后停止运动,当B停止运动时点A也停止运动.求在此过程中,A,B两点同时到达的点在数轴上对应的数.
相关试题