【题目】如图,在一面靠墙的空地上用长24m的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x(m),面积S(m2). ![]()
(1)求S与x之间的函数关系式,并直接写出自变量x的取值范围;
(2)若墙的最大可用长度为8m,求围成花圃的最大面积.
参考答案:
【答案】
(1)解:∵花圃的宽AB为x米,
∴BC=(24﹣4x)米,
∴S=x(24﹣4x)=﹣4x2+24x(0<x<6)
(2)解:∵S=﹣4x2+24x=﹣4(x﹣3)2+36,
∵24﹣4x≤8,
∴x≥4,
∵0<x<6,
∴4≤x<6,
∵a=﹣4<0,
∴S随x的增大而减小,
∴当x=4时,S最大值=32,
答;当x取4时所围成的花圃的面积最大,最大面积是32平方米
【解析】(1)根据花圃的宽AB为x米,得出BC,再根据长方形的面积公式列式计算即可;(2)根据S与x之间的函数关系式,结合x的取值范围求出函数的最值即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),点P是抛物线上一动点,连接BP,OP.

(1)求这条抛物线的解析式;
(2)若△BOP是以BO为底边的等腰三角形,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,BC=4,BD平分∠ABC,过点A作AD⊥BD于点D,过点D作DE∥CB,分別交AB、AC于点E、F,若EF=2DF,则AB的长为( )

A. 4 B. 6 C. 8 D. 10
-
科目: 来源: 题型:
查看答案和解析>>【题目】感知:如图①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的顶点D,F分别在边AC,BC上,易证:AD=BF(不需要证明);

(1)探究:将图①的正方形CDEF绕点C顺时针旋转α(0°<α<90°),连接AD,BF,其他条件不变,如图②,求证:AD=BF;
(2)应用:若α=45°,CD=
,BE=1,如图③,则BF= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=4cm,BC=3cm,动点P从点A出发,沿AB以1cm/s的速度向终点B匀速运动,同时点Q从点B出发,沿B→C→D以1cm/s的速度向终点D匀速运动,当两个点中有一个到达终点后,另一个点也随之停止.连接PQ,设点P的运动时间为x(s),PQ2=y(cm2).

(1)当点Q在边CD上,且PQ=3时,求x的值;
(2)求y与x之间的函数关系式,并写出自变量x的取值范围;
(3)直接写出y随x增大而增大时自变量x的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,BC=9,AB的垂直平分线交BC与点M,AC的垂直平分线交BC于点N,则△AMN的周长=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+bx+c经过A(﹣1,0),B(0,2)两点,将△OAB绕点B逆时针旋转90°后得到△O′A′B′,点A落到点A′的位置.
(1)求抛物线对应的函数关系式;
(2)将抛物线沿y轴平移后经过点A′,求平移后所得抛物线对应的函数关系式;
(3)设(2)中平移后所得抛物线与y轴的交点为C,若点P在平移后的抛物线上,且满足△OCP的面积是△O′A′P面积的2倍,求点P的坐标;
(4)设(2)中平移后所得抛物线与y轴的交点为C,与x轴的交点为D,点M在x轴上,点N在平移后所得抛物线上,直接写出以点C,D,M,N为顶点的四边形是以CD为边的平行四边形时点N的坐标.
相关试题