【题目】已知:如图,在△ABC 中,AB=AC,∠BAC=90°,D 是BC 上一点,EC⊥BC,EC=BD,DF=FE.
![]()
求证:(1)△ABD≌△ACE;
(2)AF⊥DE.
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】
(1)根据等腰三角形两底角相等求出∠B=∠BCA=45°,再求出∠ACE=45°,从而得到∠B=∠ACE,然后利用“边角边”即可证明△ABD≌△ACE;(2)根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形三线合一的性质证明即可.
(1)∵AB=AC,∠BAC=90°,
∴∠B=∠BCA=45°,
∵EC⊥BC,
∴∠ACE=90°﹣45°=45°,
∴∠B=∠ACE,
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS);
(2)由(1)知,△ABD≌△ACE,
∴AD=AE,
等腰△ADE中,∵DF=FE,
∴AF⊥DE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为( )

A.10cm
B.15cm
C.10
cm
D.20
cm -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,池塘边有一块长为18m,宽为10m的长方形土地,现在将其 余三面留出宽都是xm的小路,中间余下的长方形部分做菜地,用整式表示:
(1)菜地的长a= m,宽b= m;
(2)菜地面积S= m2;
(3)当x=0.5m时,菜地面积是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC是等边三角形,AN=BM,BN,MC相交于O,CH⊥BN于点H,求证:2OH=OC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】之前我们学习了一元一次方程的解法,下面是一道解一元一次方程的题:
解方程
﹣
=1老师说:这是一道含有分母的一元一次方程,我们可以根据等式的性质,可以把方程的两边同乘以6,这样就可以去掉分母了.于是,小明按照老师说的方法进行了解答,小明同学的解题过程如下:
解:方程两边同时乘以6,得
×6﹣
×6=1…………①去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②
去括号,得:4﹣6x﹣3x+15=1……………③
移项,得:﹣6x﹣3x=1﹣4﹣15…………④
合并同类项,得﹣9x=﹣18……………⑤
系数化1,得:x=2………………⑥
上述小明的解题过程从第 步开始出现错误,错误的原因是 .
请帮小明改正错误,写出完整的解题过程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B'点,AE是折痕。

(1)试判断B'E与DC的位置关系并说明理由。
(2)如果∠C=130°,求∠AEB的度数。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A从原点出发沿数轴向左运动,同时,点B也从原点出发沿数轴向右运动.已知点A的速度是1单位长度/秒,点B的速度是点A的速度的4倍(速度单位:单位长度/秒).
(1)求请在数轴上标出A、B两点从原点出发运动3秒时的位置;

(2)若A、B两点在(1)中的位置,数轴上是否存在一点P到点A,点B的距离之和为16,并求出此时点P表示的数;若不存在,请说明理由.
(3)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向左运动时,另一点C同时从B点位置出发向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以10单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
相关试题