【题目】已知,在△ABC中,∠C=90°,AC=BC=7,D是AB的中点,点E在AC上,点F在BC上,DE=DF,若BF=4,则EF=_______
参考答案:
【答案】
或5或![]()
【解析】
分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.
![]()
解:①过D作DG⊥AC,DH⊥BC,垂足为G,H
∴DG∥BC,∠CDG=∠CDH=45°
又∵D是AB的中点,
∴DG=
BC
同理:DH=
AC
又∵BC=AC
∴DG=DH
在Rt△DGE和Rt△DHF中
DG=DH,DE=DF
∴Rt△DGE≌Rt△DHF(HL)
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=GC-GE=CH-HF=CF=AB-BF=3
∴EF=
②过D作DG⊥AC,DH⊥BC,垂足为G,H
![]()
∴DG∥BC,∠CDG=∠CDH=45°
又∵D是AB的中点,
∴DG=
BC
同理:DH=
AC
又∵BC=AC
∴DG=DH
在Rt△DGE和Rt△DHF中
DG=DH,DE=DF
∴Rt△DGE≌Rt△DHF(HL)
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=CF=AC+AE=AB+BF=7+4=11
∴EF=![]()
③如图,以点D为圆心,以DF长为半径画圆交AC边分别为E、
,过点D作DH⊥AC于点H,可知
,可证△EHD≌△
,
,△DHC为等腰直角三角形,
∴∠1+∠2=45°
∴∠EDF=2(∠1+∠2)=90°
∴△EDF为等腰直角三角形
可证![]()
∴AE=CF=3,CE=BF=4
∴![]()
![]()
④有第③知,EF=5,且△EDF为等腰直角三角形,
∴ED=DF=
,可证△
,
![]()
![]()
![]()
综上可得:![]()
∴![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图所示,正方形
的边长为1,
为
边上的一个动点(点
与
、
不重合),以
为一边向正方形
外作正方形
,连接
交
的延长线于点
. 
(1)求证:①
≌△
. ②
. (2)当
平分
时,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知
中,
,
,
,
、
是
边上的两个动点,其中点
从点
开始沿
方向运动,且速度为每秒
,点
从点
开始沿
方向运动,且速度为每秒
,它们同时出发,设出发的时间为
. 
(1)出发
后,求
的长;(2)当点
在边
上运动时,出发多久后,
能形成等腰三角形?(3)当点
在边
上运动时,求能使
成为等腰三角形的运动时间. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC与△CDE都是等边三角形,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AFB=60°;③BF=AH;④△ECF≌△DCG;⑤连CG,则∠BGC=∠DGC.其中正确的个数是()

A.1个B.2个C.3个D.4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产值,小明测得AB=4m,BC=3m,CD=13m.DA=12m.又已知∠B=90°,每平方米投入资金80元,预计销售后产值每平方米480元,试求出这块土地能产生多少利润?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=
,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.
(2)求S关于t的函数关系式.
(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.

相关试题