【题目】如图,已知△ABC与△CDE都是等边三角形,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AFB=60°;③BF=AH;④△ECF≌△DCG;⑤连CG,则∠BGC=∠DGC.其中正确的个数是()
![]()
A.1个B.2个C.3个D.4个
参考答案:
【答案】B
【解析】
运用等边三角形的性质和角的和差可得出条件,①△ACD≌△BCE;由∠ACB=60°,可得∠AFB=∠ACB+∠FBC>60°,可知②错误;由△ACD≌△BCE可得出∠CBF=∠CAH,以及由题意得BC=AC,但找不到其他条件是,不能证明△BCF≌△ACH;在△BCF和△DCG中
∠CEG=∠CDG,缺少其他条件,说明④错误;作CJ⊥BE,CK⊥AD,由△BCE≌△ACD,可得∠BGC=∠DGC.
解:∵ △ABC与△CDE都是等边三角形
∴∠BCA=∠DCE=60°
∴∠BCA+∠ACE=∠ACE+∠DCE,
∴∠BCE=∠ACD,
在△BCE和△ACD中
BC=AC,∠BCE=∠ACD,CE=CD
∴△ACD≌△BCE(SAS),①正确;
∵∠ACB=60°,
∴∠AFB=∠ACB+∠FBC>60°,可知②错误;
∵△ACD≌△BCE
∴∠CBF=∠CAH;
在△BCF和△ACH中
∠CBF=∠CAH,BC=AC,缺少其他条件
故③错误;
∵△ACD≌△BCE
∴∠CEG=∠CDG;
在△BCF和△DCG中
∴∠CEG=∠CDG,缺少其他条件,故④错误;
作CJ⊥BE,CK⊥AD,
∵△BCE≌△ACD,
∴CJ=CK,
∴GC平分∠BGD,
∴∠BGC=∠DGC,故⑤正确;
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校未了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按
,
,
,
四个等级进行统计,制成了如下不完整的统计图. 
根据所给信息,解答以下问题
(1)在扇形统计图中,
对应的扇形的圆心角是________度;(2)补全条形统计图;
(3)该校九年级有300名学生,请估计足球运球测试成绩达到
级的学生有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图所示,正方形
的边长为1,
为
边上的一个动点(点
与
、
不重合),以
为一边向正方形
外作正方形
,连接
交
的延长线于点
. 
(1)求证:①
≌△
. ②
. (2)当
平分
时,求
的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,已知
中,
,
,
,
、
是
边上的两个动点,其中点
从点
开始沿
方向运动,且速度为每秒
,点
从点
开始沿
方向运动,且速度为每秒
,它们同时出发,设出发的时间为
. 
(1)出发
后,求
的长;(2)当点
在边
上运动时,出发多久后,
能形成等腰三角形?(3)当点
在边
上运动时,求能使
成为等腰三角形的运动时间. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知,在△ABC中,∠C=90°,AC=BC=7,D是AB的中点,点E在AC上,点F在BC上,DE=DF,若BF=4,则EF=_______
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.
(1)A城和B城各有多少吨肥料?
(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.
(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,以便估算产值,小明测得AB=4m,BC=3m,CD=13m.DA=12m.又已知∠B=90°,每平方米投入资金80元,预计销售后产值每平方米480元,试求出这块土地能产生多少利润?

相关试题