【题目】弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:
弹簧总长L(cm) | 16 | 17 | 18 | 19 | 20 |
重物重量x(kg) | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 |
当重物质量为5kg(在弹性限度内)时,弹簧总长L(cm)是( )
A.22.5B.25C.27.5D.30
参考答案:
【答案】B
【解析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=5时,代入函数解析式求值即可.
设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得:
,
解得:
,
∴L与x之间的函数关系式为:L=2x+15;
当x=5时,L=2×5+15=25(cm)
故重物为5kg时弹簧总长L是25cm,
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面内,给定不在同一直线上的点
,
,
,射线
是
的平分线,点
到点
,
,
的距离均等于
(
为常数),到点
的距离等于
的所有点组成图形
,图形
交射线
于点
,连接
,
.(1)求证:
;(2)过点
作直线
的垂线
,垂足为
,作
于点
,延长
交图形
于点
,连接
.若
,求直线
与图形
的公共点个数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
过点
,且与直线
交于B、C两点,点B的坐标为
.
(1)求抛物线的解析式;
(2)点D为抛物线上位于直线
上方的一点,过点D作
轴交直线
于点E,点P为对称轴上一动点,当线段
的长度最大时,求
的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使
?若存在,求点Q的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】今年是我国建国70周年,回顾过去展望未来,创新是引领发展的第一动力,北京科技创新能力不断增强,下面的统计图反映了2010﹣2018年北京市每万人发明专利申请数与授权数的情况.

根据统计图提供的信息,下列推断合理的是( )
A. 2010﹣2018年,北京市毎万人发明专利授权数逐年增长
B. 2010﹣2018年,北京市毎万人发明专利授权数的平均数超过10件
C. 2010年申请后得到授权的比例最低
D. 2018年申请后得到授权的比例最高
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线
与
轴交于
、
两点,对称轴与
轴交于点
,点
,点
,点
是平面内一动点,且满足
,
是线段
的中点,连结
.则线段
的最大值是( ).
A.3B.
C.
D.5 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A,B,C是⊙O上的三个点,点D在BC的延长线上.有如下四个结论:①在∠ABC所对的弧上存在一点E,使得∠BCE=∠DCE;②在∠ABC所对的弧上存在一点E,使得∠BAE=∠AEC;③在∠ABC所对的弧上存在一点E,使得EO平分∠AEC;④在∠ABC所对的弧上任意取一点E(不与点A,C重合) ,∠DCE=∠ABO +∠AEO均成立.上述结论中,所有正确结论的序号是( )

A. ①②③ B. ①③④ C. ②④ D. ①②③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平行四边形ABCD中,对角线AC,BD交于点O,E是边AD上的一个动点(与点A,D不重合),连接EO并延长,交BC于点F,连接BE,DF.下列说法:
① 对于任意的点E,四边形BEDF都是平行四边形;
② 当∠ABC>90°时,至少存在一个点E,使得四边形BEDF是矩形;
③ 当AB<AD时,至少存在一个点E,使得是四边形BEDF是菱形;
④ 当∠ADB=45°时,至少存在一个点E,使得是四边形BEDF是正方形.
所有正确说法的序号是:_________.
相关试题