【题目】如图,某学校在“国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A处自B点看雕塑头顶D的仰角为45°,看雕塑底部C的仰角为30°,求塑像CD的高度.(最后结果精确到0.1米,参考数据:
≈1.7)![]()
参考答案:
【答案】解:由已知得∠CBE=30°,∠BED=90°,∠DBE=45°,
在Rt△BCE中,BE=3,∠CBE=30°,
∴CE=BEtan∠CBE=3×tan30°=3×
=
,
在Rt△BED中,∵∠DBE=45°,
∴DE=BE=3,
则CD=DE﹣CE=3﹣
≈1.3m.
答:塑像CD高约1.3m.
【解析】由BE=3、∠CBE=30°可知CE=BEtan∠CBE=
,由∠DBE=45°知DE=BE=3,根据CD=DE﹣CE可得答案.
【考点精析】解答此题的关键在于理解关于仰角俯角问题的相关知识,掌握仰角:视线在水平线上方的角;俯角:视线在水平线下方的角.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.
(1)求证:BE=CD;
(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知点A(3,3),B(5,3).
(1)在y轴的负方向上有一点C(如图),使得四边形AOCB的面积为18,求C点的坐标;
(2)将△ABO先向上平移2个单位,再向左平移4个单位,得△A1B1O1
①直接写出B1的坐标:B1( )
②求平移过程中线段OB扫过的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.

(1)求∠BOD的度数;
(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).
①当t为何值时,直线EF平分∠AOB;
②若直线EF平分∠BOD,直接写出t的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:

(1)本次抽样测试的学生人数是;
(2)图1中∠α的度数是 , 并把图2条形统计图补充完整;
(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】已知三角形的三个外角的度数比为 2:3:4,则它的最小内角的度数是( )
A.20°B.40°C.60°D.80°
相关试题