【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F
(1)如图1,若∠ACD=60゜,则∠AFB= ;
(2)如图2,若∠ACD=α,则∠AFB= (用含α的式子表示);
(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.
![]()
参考答案:
【答案】(1)120°;(2) 180°―α;(3)见解析
【解析】试题分析:(1)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;
(2)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CDA+∠DAC,根据三角形内角和定理求出即可;
(3)求出∠ACE=∠DCB,证△ACE≌△DCB,推出∠CAE=∠CDB,求出∠AFB=∠CEB+∠CBE,根据三角形内角和定理求出即可.
试题解析:解:(1)∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中
![]()
∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE
=∠CDA+∠DAE+∠BAE
=∠CDA+∠DAC
=180°―60°
=120°;
(2)解:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中
![]()
∴△ACE≌△DCB,∴∠CAE=∠CDB,∴∠AFB=∠CDB+∠CDA+∠DAE
=∠CDA+∠DAE+∠BAE
=∠CDA+∠DAC
=180°―∠ACD
=180°―α;
(3)∠AFB=180-α,证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中
![]()
∴△ACE≌△DCB,∴∠AEC=∠DBC,∴∠AFB=∠AEC+∠CEB+∠EBD
=∠DBC+∠CEB+∠EBC
=∠CEB+∠EBC
=180°-∠ECB
=180°-α.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,D是BC延长线上的一点,线段BD的垂直平分线EG交AB于点E,交BD于点G.

(1)当∠B=30°时,AE和EF有什么关系?请说明理由;
(2)当点D在BC延长线上(CD<BC)运动时,点E是否在线段AF的垂直平分线上? -
科目: 来源: 题型:
查看答案和解析>>【题目】某市有甲、乙两种出租车,他们的服务质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.8元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.
(1)当x=5时,请分别求出乘坐甲、乙两种出租车的费用;
(2)用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;
(3)假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点F是△ABC的边BC延长线上的一点,且AC=CF,∠ABC和∠ACE的平分线交于点P,下列结论:①点P到△ABC三边的距离相等;②点P在∠DAC的平分线上;③BP垂直平分AC;④CP垂直平分AF;其中正确的判断有______________(只填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】解答
(1)在数轴上表示下列各数:1.5,0,﹣3,﹣(﹣
),﹣|﹣4
|,并用“<”号把它们连接起来.
(2)根据(1)中的数轴,找出大于﹣|﹣4
|的最小整数和小于﹣(﹣
)的最大整数,并求出它们的和. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=﹣
x+1与x轴交于点A,与y轴交于点B,抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;
(2)点P是第一象限抛物线上的一点,连接PA、PB、PO,若△POA的面积是△POB面积的
倍.①求点P的坐标;
②点Q为抛物线对称轴上一点,请直接写出QP+QA的最小值;
(3)点M为直线AB上的动点,点N为抛物线上的动点,当以点O、B、M、N为顶点的四边形是平行四边形时,请直接写出点M的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】【问题引入】
已知:如图BE、CF是ΔABC的中线,BE、CF相交于G。求证:


证明:连结EF
∵E、F分别是AC、AB的中点
∴EF∥BF且EF=
BC∴

【思考解答】
(1)连结AG并延长AG交BC于H,点H是否为BC中点 (填“是”或“不是”)
(2)①如果M、N分别是GB、GC的中点,则四边形EFMN 是 四边形。
②当
的值为 时,四边形EFMN 是矩形。③当
的值为 时,四边形EFMN 是菱形。④如果AB=AC,且AB=10,BC=16,则四边形EFMN的面积
=_________
相关试题