【题目】如图,在Rt△ABC中,∠ACB=90°,D是BC延长线上的一点,线段BD的垂直平分线EG交AB于点E,交BD于点G. ![]()
(1)当∠B=30°时,AE和EF有什么关系?请说明理由;
(2)当点D在BC延长线上(CD<BC)运动时,点E是否在线段AF的垂直平分线上?
参考答案:
【答案】
(1)解:AE=EF,
理由是:∵线段BD的垂直平分线EG交AB于点E,交BD于点G,
∴DE=BE,
∵∠B=30°,
∴∠D=∠B=30°,
∴∠DEA=∠D+∠B=60°,
∵在Rt△ABC中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∴∠A=∠DEA=60°,
∴△AEF是等边三角形,
∴AE=EF;
(2)解:点E是在线段AF的垂直平分线,
理由是:∵∠B=∠D,∠ACB=90°=∠FCD,
∴∠A=∠DFC,
∵∠DFC=∠AFE,
∴∠A=∠AFE,
∴EF=AE,
∴点E是在线段AF的垂直平分线.
【解析】(1)根据线段垂直平分线性质得出DE=BE,求出∠D=∠B=30°,根据三角形内角和定理和三角形外角性质求出∠A=∠DEA=60°,即可得出答案;(2)求出∠A=∠AFE,根据线段垂直平分线性质得出即可.
【考点精析】掌握线段垂直平分线的性质和含30度角的直角三角形是解答本题的根本,需要知道垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等;在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2018年浙江省生产总值约为56200亿元.数56200用科学记数法表示为( )
A. 56.2×103B. 5.62×104C. 562×102D. 0.562×103
-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠α的补角为29°18′,则∠α的大小为( )
A. 150°42′ B. 60°42′ C. 150°82′ D. 60°82′
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形的两条边长分别是3cm和6cm,则该三角形的周长为( )
A. 12cm B. 15cm C. 12cm或15cm D. 9cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市有甲、乙两种出租车,他们的服务质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.8元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.
(1)当x=5时,请分别求出乘坐甲、乙两种出租车的费用;
(2)用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;
(3)假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点F是△ABC的边BC延长线上的一点,且AC=CF,∠ABC和∠ACE的平分线交于点P,下列结论:①点P到△ABC三边的距离相等;②点P在∠DAC的平分线上;③BP垂直平分AC;④CP垂直平分AF;其中正确的判断有______________(只填序号).

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F
(1)如图1,若∠ACD=60゜,则∠AFB= ;
(2)如图2,若∠ACD=α,则∠AFB= (用含α的式子表示);
(3)将图2中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),如图3.试探究∠AFB与α的数量关系,并予以证明.

相关试题