【题目】如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.![]()
(1)求这座山的高度(小明的身高忽略不计);
(2)求索道AC的长(结果精确到0.1m).
(参考数据:tan31°≈
,sin31°≈
,tan39°≈
,sin39°≈
)
参考答案:
【答案】
(1)
解:过点A作AD⊥BE于D,
设山AD的高度为(x)m,
在Rt△ABD中,
∵∠ADB=90°,tan31°=
,
∴BD=
≈
=
x,
在Rt△ACD中,
∵∠ADC=90°,tan39°=
,
∴CD=
≈
=
x,
∵BC=BD﹣CD,
∴
x﹣
x=80,
解得:x=180.
即山的高度为180米
(2)
解:在Rt△ACD中,∠ADC=90°,
sin39°=
,
∴AC=
=
≈282.9(m).
答:索道AC长约为282.9米.
![]()
【解析】(1)过点A作AD⊥BE于D,设山AD的高度为(x)m,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=
,代入数值求出AC的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,则△EBG的周长是cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为m.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是
,求从袋中取出黑球的个数. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知反比例函数y=
(k为常数,k≠1).
(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;
(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;
(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1 , y1)、B(x2 , y2),当y1>y2时,试比较x1与x2的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.

(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;
(Ⅱ)如图②,若∠CAB=60°,求BD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=﹣
x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
相关试题