【题目】如图,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣5,1),B(﹣4,4),C(﹣1,﹣1).
(1)在图1中画出△ABC关于y轴对称的图形△A1B1C1;
(2)直接写出△A1B1C1的面积;
(3)在图2中y轴上找出点P,使PB+PC的值最小(保留作图痕迹).
![]()
参考答案:
【答案】(1)详见解析;(2)7;(3)详见解析.
【解析】
(1)依据轴对称的性质,即可得到△ABC关于y轴对称的图形△A1B1C1;
(2)依据割补法进行计算,即可得到△A1B1C1的面积;
(3)连接C1B,交y轴于点P,连接PC,依据两点之间,线段最短,即可得到PB+PC的值最小.
解:(1)如图1所示,△A1B1C1即为所求;
![]()
(2)△A1B1C1的面积为:4×5﹣
×2×4﹣
×1×3﹣
×3×5=20﹣4﹣1.5﹣7.5=7;
(3)如图2,连接C1B,交y轴于点P,连接PC,则PB+PC的值最小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.

(1)写出这一函数的表达式.
(2)当气体体积为1 m3时,气压是多少?
(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全考虑,气体的体积应不小于多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知锐角∠AOB如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作
,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交
于点M,N;(3)连接OM,MN.
根据以上作图过程及所作图形,下列结论中错误的是( )

A. ∠COM=∠CODB. 若OM=MN,则∠AOB=20°
C. MN∥CDD. MN=3CD
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:直线y=x与反比例函数y=
(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;
(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;
(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=
的图象上时,求点A'的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,O为坐标原点,AOBC的顶点A、C的坐标分别为A(﹣2,0)、C(0,3),反比例函数的图象经过点B.
(1)求反比例函数的表达式;
(2)这个反比例函数的图象与一个一次函数的图象交于点B、D(m,1),根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,D是边AB上一点,E是边AC的中点,作CF∥AB交DE的延长线于点F.
(1)证明:△ADE≌△CFE;
(2)若∠B=∠ACB,CE=5,CF=7,求DB.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y1=
(x>0)的图象经过菱形对角线的交点A,且交另一边BC交于点F,点A的坐标为(4,2).(1)求反比例的函数的解析式;
(2)设经过B,C两点的一次函数的解析式为y2=mx+b,求y1<y2的x的取值范围.

相关试题