【题目】深圳市教育局在全市中小学开展“四点半活动”试点工作,某校为了了解学生参与“四点半活动”项目的情况,对初中的部分学生进行了随机调查,调查项目分为“科技创新”类,“体育活动”类,“艺术表演”类,“植物种植”类及“其它”类共五大类别,并根据调查的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息解答下面的问题.
(1)请求出此次被调查学生的总人数 人;
(2)根据以上信息,补全频数分布直方图;
(3)求出扇形统计图中,“体育活动”α的圆心角等于 度;
(4)如果本校初中部有1800名学生,请估计参与“艺术表演”类项目的学生大约多少人?
![]()
参考答案:
【答案】(1)200;(2)补图见解析;(3)108;(4)360人.
【解析】试题分析: (1)根据题意列式即可得到结果;
(2)根据题意作出图形即可;
(3)用360°乘以体育活动”所占的百分比即可得到结论;
(4)根据题意列式即可即可.
试题解析:
(1)此次被调查学生的总人数为22÷11%=200(人);
(2)补全频数分布直方图如图所示,
![]()
(3)体育活动”α的圆心角=360°×
=108度;
(4)1800×
×100%=360(人),
答:参与“艺术表演”类项目的学生大约360人.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知在菱形ABCD中,对角线AC、BD交于点O,AB=2AO;(1)如图1,求∠BAC的度数;(2)如图2,P为菱形ABCD外一点,连接AP、BP、CP,若∠CPB=120°,求证:CP+BP=AP;(3)如图3,M为菱形ABCD外一点,连接AM、CM、DM,若∠AMD=150°,
CM=2
,DM=2,求四边形ACDM的面积。


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F、G分别在边AB、AD上.则cos∠EFG的值为________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a+b)+2(a+b)-(a+b)-(4+2-1)(a+b)=5(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.
尝试应用:
(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________.
(2)已知x2-2y=5,求21-
x2+y的值;(3)拓广探索:已知a-2b=3,2b-c=-5,c-d=10,求2(a-c)+2(2b-d)-2(2b-c)的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若线段AB=10cm,C是线段AB上的任意一点,M、N分别是AC和CB的中点,则MN= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足
=AD,连接CE并延长交AD于点F,连接AE,过点B作
于点G,延长BG交AD于点H.在下列结论中:①
;②
;③
. 其中不正确的结论有( )
A. 0个B. 1个C. 2个D. 3个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(-4,0)、B(0,2)、C(6,0),直线AB与直线CD相交于点D,D点的横纵坐标相同;
(1)求点D的坐标;
(2)点P从O出发,以每秒1个单位的速度沿x轴正半轴匀速运动,过点P作x轴的垂线分别与直线AB、CD交于E、F两点,设点P的运动时间为t秒,线段EF的长为y(y>0),求y与t之间的函数关系式,并直接写出自变量t的取值范围;
(3)在(2)的条件下,直线CD上是否存在点Q,使得△BPQ是以P为直角顶点的等腰直角三角形?若存在,请求出符合条件的Q点坐标,若不存在,请说明理由。

相关试题