【题目】(方程思想)如图,在铁路CD同侧有两个村庄A,B,它们到铁路的距离分别是15 km和10 km,作AC⊥CD,BD⊥CD,垂足分别为C,D,且CD=25 km.已知铁路旁有一个农副产品收购站E,且AE=BE,求CE的长.
![]()
参考答案:
【答案】CE=10 km.
【解析】
在Rt△DBE和Rt△CAE中,根据勾股定理得:AC2+CE2=AE2和BD2+DE2=BE2,再由AE=BE得出AE2=BE2,从而得出AC2+CE2=BD2+DE2,设出CE的长,可将AE和BE的长表示出来,列出等式进行求解即可.
解:在Rt△ACE中,根据勾股定理得AC2+CE2=AE2.
在Rt△BDE中,根据勾股定理得BD2+DE2=BE2.
∵AE=BE,
∴AE2=BE2,
即AC2+CE2=BD2+DE2.
设CE=x km,
则152+x2=102+(25-x)2,
解得x=10.
∴CE=10 km.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的材料: 2014年,是全面深化改革的起步之年,是实施“十二五”规划的攻坚之年,房山区经济发展稳中有升、社会局面和谐稳定,年初确定的主要任务目标圆满完成:全年地区生产总值和固定资产投资分别为530和505亿元;区域税收完成202.8亿;城乡居民人均可支配收入分别达到3.6万元和1.9万元.
2015年,我区较好实现了“十二五”时期经济社会发展目标,开启了房山转型发展的新航程:全年地区生产总值比上年增长7%左右;固定资产投资完成530亿元;区域税收完成247亿元;公共财政预算收入完成50.02亿元;城乡居民人均可支配收入分别增长8%和10%.
2016年,发展路径不断完善,房山区全年地区生产总值完成595亿元,固定资产投资完成535亿元,超额实现预期目标,区域税收比上一年增长4.94亿元,城乡居民可支配收入分别增长8.%和8.8%.
(摘自《房山区政府工作报告》)
根据以上材料解答下列问题:
(1)2015年,我区全年地区生产总值为亿元.
(2)选择统计图或统计表,将我区2014~2016年全年地区生产总值、固定资产投资和区域税收表示出来. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,对角线AB把四边形ACBE分为△ABC和△ABE两部分,如果△ABC中BC边上的高和△ABE中BE边上的高相等,且AC=AE.
(1)在原图上画出△ABC中BC边上的高AD与△ABE中BE边上的高AF;
(2)请你猜想BC与BE的数量关系并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小东根据学习函数的经验,对函数y=
图象与性质进行了探究,下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数y=
的自变量x的取值范围是;
(2)如表是y与x的几组对应值.x
…
﹣2
﹣1
﹣

0

1

2

3
4
…
y
…



2

4

2


m
…
表中m的值为;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出函数y=
的大致图象; 
(4)结合函数图象,请写出函数y=
的一条性质.
(5)解决问题:如果函数y=
与直线y=a的交点有2个,那么a的取值范围是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,直线y=2x﹣3与y轴交于点A,点A与点B关于x轴对称,过点B作y轴的垂线l,直线l与直线y=2x﹣3交于点C.
(1)求点C的坐标;
(2)如果抛物线y=nx2﹣4nx+5n(n>0)与线段BC有唯一公共点,求n的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=BC,∠B=90°,点D为直线BC上的一个动点(不与B、C重合),连结AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连结EC.

(1)如果点D在线段BC上运动,如图1:
①依题意补全图1;
②求证:∠BAD=∠EDC;
③通过观察、实验,小明得出结论:在点D运动的过程中,总有∠DCE=135°,.
小明与同学讨论后,形成了证明这个结论的几种想法:
想法一:在AB上取一点F,使得BF=BD,要证∠DCE=135°,只需证△ADF≌△DEC.
想法二:以点D为圆心,DC为半径画弧交AC于点F,要证∠DCE=135°,只需证△AFD≌△DCE.
想法三:过点E作BC所在直线的垂直线段EF,要证∠DCE=135°,只需证EF=CF.
…
请你参考上面的想法,证明∠DCE=135°
(2)如果点D在线段CB的延长线上运动,利用图2画图分析,∠DCE的度数还是确定的值吗?如果是,直接写出∠DCE的度数;如果不是,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,对于点P(x,y),如果点Q(x,y′)的纵坐标满足y′=
,那么称点Q为点P的“关联点”.
(1)请直接写出点(3,5)的“关联点”的坐标;
(2)如果点P在函数y=x﹣2的图象上,其“关联点”Q与点P重合,求点P的坐标;
(3)如果点M(m,n)的“关联点”N在函数y=2x2的图象上,当0≤m≤2时,求线段MN的最大值.
相关试题