【题目】探究:小明在求同一坐标轴上两点间的距离时发现,对于平面直角坐标系内任意两点P1(x1,y1),P2(x2,y2),可通过构造直角三角形利用图1得到结论:
他还利用图2证明了线段P1P2的中点P(x,y)P的坐标公式:
,
.
![]()
(1)请你帮小明写出中点坐标公式的证明过程;
运用:(2)①已知点M(2,﹣1),N(﹣3,5),则线段MN长度为 ;
②直接写出以点A(2,2),B(﹣2,0),C(3,﹣1),D为顶点的平行四边形顶点D的坐标: ;
拓展:(3)如图3,点P(2,n)在函数
(x≥0)的图象OL与x轴正半轴夹角的平分线上,请在OL、x轴上分别找出点E、F,使△PEF的周长最小,简要叙述作图方法,并求出周长的最小值.
参考答案:
【答案】(1)答案见解析;(2)①
;②(﹣3,3)或(7,1)或(﹣1,﹣3);(3)
.
【解析】
试题分析:(1)用P1、P2的坐标分别表示出OQ和PQ的长即可证得结论;
(2)①直接利用两点间距离公式可求得MN的长;②分AB、AC、BC为对角线,可求得其中心的坐标,再利用中点坐标公式可求得D点坐标;
(3)设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,则可知OR=OS=2,利用两点间距离公式可求得R的坐标,再由PR=PS=n,可求得n的值,可求得P点坐标,利用中点坐标公式可求得M点坐标,由对称性可求得N点坐标,连接MN交直线OL于点E,交x轴于点S,此时EP=EM,FP=FN,此时满足△PEF的周长最小,利用两点间距离公式可求得其周长的最小值.
试题解析:
(1)∵P1(x1,y1),P2(x2,y2),∴Q1Q2=OQ2﹣OQ1=x2﹣x1,∴Q1Q=
,∴OQ=OQ1+Q1Q=x1+
=
,∵PQ为梯形P1Q1Q2P2的中位线,∴PQ=
=
,即线段P1P2的中点P(x,y)P的坐标公式为x=
,y=
;
(2)①∵M(2,﹣1),N(﹣3,5),∴MN=
=
,故答案为:
;
②∵A(2,2),B(﹣2,0),C(3,﹣1),∴当AB为平行四边形的对角线时,其对称中心坐标为(0,1),设D(x,y),则x+3=0,y+(﹣1)=2,解得x=﹣3,y=3,∴此时D点坐标为(﹣3,3),当AC为对角线时,同理可求得D点坐标为(7,1),当BC为对角线时,同理可求得D点坐标为(﹣1,﹣3),综上可知D点坐标为(﹣3,3)或(7,1)或(﹣1,﹣3),故答案为:(﹣3,3)或(7,1)或(﹣1,﹣3);
(3)如图,设P关于直线OL的对称点为M,关于x轴的对称点为N,连接PM交直线OL于点R,连接PN交x轴于点S,连接MN交直线OL于点E,交x轴于点F,又对称性可知EP=EM,FP=FN,∴PE+PF+EF=ME+EF+NF=MN,∴此时△PEF的周长即为MN的长,为最小,设R(x,
),由题意可知OR=OS=2,PR=PS=n,∴
=2,解得x=﹣
(舍去)或x=
,∴R(
,
),∴
,解得n=1,∴P(2,1),∴N(2,﹣1),设M(x,y),则
=
,
=
,解得x=
,y=
,∴M(
,
),∴MN=
=
,即△PEF的周长的最小值为
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】国家规定,中、小学生每天在校体育活动时间不低于1h.为此,某区就“你每天在校体育活动时间是多少”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图如图所示,其中A组为t<0.5h,B组为0.5h≤t<1h,C组为1h≤t<1.5h,D组为t≥1.5h.
请根据上述信息解答下列问题:
(1)本次调查数据的众数落在 组内,中位数落在 组内;
(2)该辖区约有18000名初中学生,请你估计其中达到国家规定体育活动时间的人数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知空气的单位体积质量为1.24×10﹣3克/厘米3 , 1.24×10﹣3用小数表示为( )
A. 0.000124 B. 0.0124 C. ﹣0.00124 D. 0.00124
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CD∥AB,∠ABC,∠BCD 的角平分线交 AD 于 E 点,且 E 在 AD 上,CE 交 BA 的延长线于 F 点.

(1)试问 BE 与 CF 互相垂直吗?若垂直,请说明理由;
(2)若 CD=3,AB=4,求 BC 的长 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,△ABO中,A,B两点的坐标分别为(2,4),(7,2),C,G,F,E分别为过A,B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC内接于⊙O,CD平分∠ACB交⊙O于D,过点D作PQ∥AB分别交CA、CB延长线于P、Q,连接BD.
(1)求证:PQ是⊙O的切线;
(2)求证:BD2=ACBQ;
(3)若AC、BQ的长是关于x的方程
的两实根,且tan∠PCD=
,求⊙O的半径.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是( )
A. ﹣5 B. ﹣3 C. 3 D. 1
相关试题