【题目】如图,已知△ABC是等边三角形,E,D,G分别在AB,BC,AC边上,且AE=BD=CG.连接AD,BG,CE,相交于F,M,N.
(1)求证:AD=CE;
(2)求∠DFC的度数;
(3)试判断△FMN的形状,并说明理由.
![]()
参考答案:
【答案】(1)见解析;(2)60°;(3)等边三角形,理由见解析.
【解析】试题分析:(1)求证ABDCAE即可证明AD=CE;(2)由三角形外角的性质可以得到∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=60°;(3)与(2)同样的道理可证∠FMN=∠FNM=∠DFC=60°,即可证得△FMN是等边三角形。
解:(1)证明:∵△ABC是等边三角形,
∴∠BAC=∠ABC=60°,AB=AC.
又∵AE=BD,
∴△AEC≌△BDA(SAS).
∴AD=CE.
(2)由(1)知△AEC≌△BDA,
∴∠ACE=∠BAD.
∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=60°.
(3)△FMN为等边三角形,由(2)知∠DFC=60°,
同理可求得∠AMG=60°,∠BNF=60°.
∴△FMN是等边三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小慧根据学习函数的经验,对函数
的图象与性质进行了研究,下面是小慧的研究过程,请补充完成:
(1)函数
的自变量
的取值范围是__________;(2)列表,找出
与
的几组对应值.















其中,
__________;(3)在平面直角坐标系
中,描出以上表中各队对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:____________________________________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单 位:s)(0<t<
)。(1)如图1,连接DQ平分∠BDC时,t的值为 ;
(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;
(3)请你继续进行探究,并解答下列问题:
①证明:在运动过程中,点O始终在QM所在直线的左侧;
②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C(﹣2,1),
△ABC绕原点顺时针旋转90°,得到△A1B1C1,△A1B1C1向左平移2个单位,再向下平移5个单
位得到△A2B2C2.
(1)画出△A1B1Cl和△A2B2C2;
(2)P(a,b)是△ABC的AC边上一点,△ABC经旋转、平移后点P的对应点分别为P1、P2,请
写出点P1、P2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】NBA季后赛正如火如荼地进行着,詹姆斯率领的骑士队在第三场季后赛中先落后25分的情况
下实现了大逆转.该场比赛中詹姆斯的技术统计数据如下表所示:
技术
上场时间
(分钟)
出手投篮(次)
投中
(次)
罚球
得分
篮板
(个)
助攻
(次)
个人
总得分
数据
45
27
14
7
13
12
41
【注:表中出手投篮次数和投中次数均不包括罚球,个人总得分来自2分球和3分球的得分以及罚
球得分.】根据以上信息,求出本场比赛中詹姆斯投中2分球和3分球的个数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一个角的补角是120°,则这个角的余角是___________°
-
科目: 来源: 题型:
查看答案和解析>>【题目】“低碳环保,你我同行”.今年合肥市区的增设的“小黄车”、“摩拜单车”等公共自行车
给市民出行带来了极大的方便.图①是某种公共自行车的实物图,图②是该种公共自行车的
车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,
座杆CE=15cm,且∠EAB=75°.求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°
≈0.26,tan75°≈3.73)

相关试题