【题目】阅读下列材料,并解决后面的问题。
材料:我们知道,n个相同的因数a相乘
可记为an,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3)
一般地,若an=b (a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4)
(1)计算以下各对数的值:log24= ,log216= ,log264= .
(2)观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
(3)根据(2)的结果,我们可以归纳出:logaM+logaN=logaM N (a>0且a≠1,M>0,N>0),请你根据幂的运算法则:am=an+m以及对数的定义证明该结论。
参考答案:
【答案】6;log264;loga(MN);证明见解析.
【解析】试题分析:首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.
(1)根据对数的定义求解;
(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;
(3)有特殊到一般,得出结论:logaM+logaN=loga(MN);
(4)首先可设logaM=b1,logaN=b2,再根据幂的运算法则:anam=an+m以及对数的含义证明结论.
试题解析:(1)log24=2,log216=4,log264=6;
(2)4×16=64,log24+log216=log264;
(3)logaM+logaN=loga(MN);
(4)证明:设logaM=b1,logaN=b2,
则ab1=M,ab2=N,
∴MN=ab1ab2=ab1+b2,
∴b1+b2=loga(MN)即logaM+logaN=loga(MN).
-
科目: 来源: 题型:
查看答案和解析>>【题目】点A(1-x,5)、B(3,y)关于y轴对称,那么x+y = ___.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A与点B(–4,–5)关于x轴对称,则A点坐标是
A.(4,–5) B.(4,5)
C.(–4,–5) D.(–4,5)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图甲是一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个全等的小长方形,再按图乙围成一个较大的正方形.

(1)请用两种方法表示图中阴影部分面积(只需表示,不必化简);
(2)比较(1)两种结果,你能得到怎样的等量关系?
请你用(2)中得到等量关系解决下面问题:如果m﹣n=5,mn=14,求m+n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.

(1)求证:∠ADC=∠ABD;
(2)求证:AD2=AMAB;
(3)若AM=
,sin∠ABD=
,求线段BN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.

(1)求证:AD=CE;
(2)求∠DFC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知PA、PB切⊙O于A、B两点,连AB,且PA,PB的长是方程x2﹣2mx+3=0的两根,AB=m.试求:

(1)⊙O的半径;
(2)由PA,PB,
围成图形(即阴影部分)的面积.
相关试题