【题目】(1)请用两种不同的方法列代数式表示图中阴影部分的面积.
![]()
方法①_________________;
方法②_________________;
(2)根据(1)写出一个等式________________;
(3)若
,
.
①求
的值。
②
,
的值.
参考答案:
【答案】(1)方法①
,②
;(2)
;(3)①
②
或
.
【解析】
(1)方法①根据阴影部分的面积=大正方形的面积-长方形的面积×4,即可解得;
方法②根据阴影部分的面积=小正方形的边长×边长,即可解答;
(2)根据(1)即可写出等式;
(3)根据②的等式即可求出x-y的值.
解:(1)方法①:阴影部分的面积=(m+n)2﹣4mn;
方法②:阴影部分的面积=(m﹣n)2;
(2)由(1)得(m+n)2﹣4mn=(m﹣n)2,
(3)①由(2)可得:(x﹣y)2=(x+y)2﹣4xy,
∵
,
,
∴(x﹣y)2=36﹣11=25,
②∵(x﹣y)2=25,
∴x﹣y=±5.
∵
,
∴
或
,
解之得
或
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.

(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ中PQ的长度等于5cm?
(3)在(1)中,当P,Q出发几秒时,△PBQ有最大面积? -
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:
信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;
信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.
根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与实践
已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.

(1)(问题发现)
如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),
①证明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(类比探究)
如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.
(3)(拓展延伸)
如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读理解题:
按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为
,依次类推,排在第
位的数称为第
项,记为
.
一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母
表示(
).如:数列1,3,9,27,…为等比数列,其中
,公比为
.
则:
(1)等比数列3,6,12,…的公比
为 , 第4项是 .
(2)如果一个数列
,
,
,
,…是等比数列,且公比为
,那么根据定义可得到:
,
,
,……
.
∴
,
,
, 
由此可得:an=(用a1和q的代数式表示)
(3)若一等比数列的公比q=2,第2项是10,请求它的第1项与第4项. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某村为了尽早摆脱贫穷落后的现状,积极响应国家号召,15位村民集资8万元,承包了一些土地种植有机蔬菜和水果,种这两种作物每公顷需要人数和投入资金如下表:
作物种类
每公顷所需人数/人
每公顷投入资金/万元
蔬菜
4
2
水果
5
3
在现有条件下,这15位村民应承包多少公顷土地,怎样安排能使每人都有事可做,并且资金正好够用?
相关试题