【题目】问题背景
如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得到四边形EFGH是正方形。
类比研究
如图2,在正△ABC的内部,作∠BAD=∠CBE=∠ACF,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合)。![]()
(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;
(2)△DEF是否为正三角形?请说明理由;
(3)进一步探究发现,△ABD的三边存在一定的等量关系,设
,
,
,请探索
,
,
满足的等量关系。
参考答案:
【答案】
(1)
△ABD≌△BCE≌△CAF.
证明: ∵正△ABC中,
∴∠CAB=∠ABC=∠BCA=60°,AB=BC,
∵∠ABD=∠ABC-∠2,∠BCE=∠ACB-∠3,又∠2=∠3
∴∠ABD=∠BCE,
又∵∠1=∠2,
∴△ABD≌△BCE(ASA).
![]()
(2)
△DEF是正三角形.
证明:∵△ABD≌△BCE≌△CAF,
∴∠ADB=∠BEC=∠CFA,
∴∠FDE=∠DEF=∠EFD,
∴△DEF是正三角形.
(3)
解:作AG⊥BD,交BD延长线于点G.
由△DEF是正三角形得到∠ADG=60°(或者∠ADG=∠1+∠ABD=∠2+∠ABD=60°.)
∴在Rt△ADG中,DG=
b,AG=
b.
∴在Rt△ABG中,c2=
+
,
∴c2=a2+ab+b2
![]()
【解析】(1)由正△AB得出∠CAB=∠ABC=∠BCA=60°,AB=BC,再通过等量代换得出∠1=∠2,从而得出△ABD≌△BCE(ASA).
(2)由(1)中△ABD≌△BCE≌△CAF,得出∠ADB=∠BEC=∠CFA,∠FDE=∠DEF=∠EFD,从而得出△DEF是正三角形.
(3)作AG⊥BD,交BD延长线于点G.由△DEF是正三角形得到∠ADG=60°(或者∠ADG=∠1+∠ABD=∠2+∠ABD=60°.)从而在Rt△ADG中,
DG=
b,AG=
b;在Rt△ABG中,c2=
+
,最后得出c2=a2+ab+b2
【考点精析】通过灵活运用含30度角的直角三角形和勾股定理的概念,掌握在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一副含
和
角的三角板
和
叠合在一起,边
与
重合,
(如图1),点
为边
的中点,边
与
相交于点
.现将三角板
绕点
按顺时针方向旋转(如图2),在
从
到
的变化过程中,点
相应移动的路径长为 . (结果保留根号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.

(1)如图,若点D在线段BC上,点E在线段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°.②求α,β之间的关系式.
(2)是否存在不同于以上②中的α,β之间的关系式?若存在,请求出这个关系式(求出一个即可);若不存在,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等腰直角△ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径

(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求
的值 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.

(1)求证:△ADE∽△ABC;
(2)若AD=3,AB=5,求
的值.
相关试题