【题目】平面直角坐标系中,点A的坐标为(2,4),点B的坐标为(2,7) ,直线l经过A点且平行于x
轴,直线l上的动点C从A点出发以每秒4个单位的速度沿直线l运动.若在x轴上有两点D、E,
连接DB、OB,连接EC、OC,满足DB=OB,EC=OC,设点C运动时间t秒,
(1) 如图1,若动点C从A点出发向左运动,当t=1秒时,
①求线段BC的长和点E的坐标;
②求此时DE与AC的数量关系?
(2)探究:动点C在直线l运动,无论t取何值,是否都存在上述(1)②中的数量关系? 若存在,请证明;若不存在,请说明理由.
![]()
![]()
图1 图2
参考答案:
【答案】(1) ①BC=5, E(-4,0)②DE=2AC (2)存在,证明见解析
【解析】试题分析:(1)①根据题意可知AC=4,AB=3,由勾股定理即可得BC的长,再根据EC=OC以及点C的坐标即可得点E的坐标;
②由点B的坐标以及DB=OB即可得点D的坐标,从而得到DE的长,从而可得;
(2)由题意可知AC=4t,C(2-4t,4),从而可得E(4-8t,0),由D(4,0)可得DE=8t,从而可得.
试题解析:(1)①当t=1时,AC=4t=4,4-2=2,所以C(-2,4),
由A(2,4)、B(2,7)可得AB=3,
由勾股定理则有BC=5,
因为EC=OC,C(-2,4),O(0,0),所以E(-4,0);
②由OB=BD,O(0,0),B(2,7),所以D(4,0),
由E(-4,0),所以DE=8,
因为AC=4,所以DE=2AC;
(2)存在,理由如下:
∵AC=4t,A(2,4),∴C(2-4t,4),
∵EC=OC, O(0,0),∴E(4-8t,0);
∵OB=BD,O(0,0),B(2,7),∴D(4,0),
∴DE=8t,
∴DE=2AC.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=__.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点C是线段AB上一点,△ACD和△BCE都是等边三角形,连结AE,BD,设AE交CD于点F.
(1)求证:△ACE≌△DCB;
(2)求证:△ADF∽△BAD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )

A. 0 B. 1 C. 2 D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲,乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中其中一人因故障停止加工几分钟后又继续按原速加工,直到他们完成任务,如图表示甲比乙多加工的零件数量
(个)与加工时间
(分)之间的函数关系,观察图象解决下列问题:(1)点B的坐标是________,B点表示的实际意义是___________ _____;
(2)求线段BC对应的函数关系式和D点坐标;
(3)乙在加工的过程中,多少分钟时比甲少加工100个零件?
(4)为了使乙能与甲同时完成任务,现让丙帮乙加工,直到完成.丙每分钟能加工3个零件,并把丙加工的零件数记在乙的名下,问丙应在第多少分钟时开始帮助乙?并在图中用虚线画出丙帮助后y与x之间的函数关系的图象.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点E在DC的延长线上,且CE=
CD,过点B作BF∥DE交AE的延长线于点F,交AC的延长线于点G.(1)求证:AB=BG;
(2)若点P是直线BG上的一点,试确定点P的位置,使△BCP与△BCD相似.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中正确的有()
(1) 钝角的补角一定是锐角
(2) 过己知直线外一点作这条直线的垂线有且只有一条
(3) —个角的两个邻补角是对顶角
(4) 等角的补角相等
(5) 直线
外一点A与直线
上各点连接而成的所有线段中,最短线段的长是3cm,则点A到直线
的距离是3cm .A. 2个 B. 3个 C. 4 个 D. 5 个
相关试题