【题目】已知,如图,E、F 是平行四边形 ABCD 的对角线 AC 上的两点,AE=CF.
![]()
求证:(1)EB DF ;
(2)EB∥DF .
参考答案:
【答案】(1)见解析;(2)见解析
【解析】
(1)由AE=CF,得到AF=CE,由平行四边形的性质,得出AD=CB,∠DAF=∠BCE,从而根据SAS推出两三角形全等,即可得到答案;
(2)由(1)可得到∠DFA=∠BEC,所以得到DF∥EB.
解:(1)∵AE=CF,
∴AE+EF=CF+FE,即AF=CE.
又ABCD是平行四边形,
∴AD=CB,AD∥BC.
∴∠DAF=∠BCE.
在△ADF与△CBE中
,
∴△ADF≌△CBE(SAS).
∴EB DF ;
(2)∵△ADF≌△CBE,
∴∠DFA=∠BEC.
∴DF∥EB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,对角线AC、BD相交于点O,BD=2AD,E、F、G分别是OC、OD、AB的中点,下列结论:①∠OBE=
∠ADO;②EG=EF;③GF平分∠AGE;④EF⊥GE,其中正确的是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两个袋中均有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标的数值分别为﹣7,﹣1,3,乙袋中的三张卡片上所标的数值分别为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上标的数值,再从乙袋中随机取出一张卡片,用y表示取出的卡片上标的数值,把x、y分别作为点A的横坐标、纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A落在第二象限的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】大家知道
是无理数,而无理数是无限不循环小数,因此
的小数部分我们不可能全部写出来,
,于是可用
来表示
的小数部分.请解答下列问题:(1)
的整数部分是________,小数部分是________.(2)如果
的小数部分为
,
的整数部分为
,求
的值.(3)已知:
,其中
是整数,且
,求
的相反数. -
科目: 来源: 题型:
查看答案和解析>>【题目】某供暖部门为了解市民对2016年供暖情况的满意程度,对若干户市民进行了抽样调查(把市民对供暖情况的满意程度分为三个层次,A层次:满意;B层次:比较满意;C层次:不满意),将调查结果绘制成了如图所示的条形统计图和扇形统计图.

(1)请计算多少户市民参加了此次抽样调查,并补全条形统计图.
(2)根据抽样调查结果,请估计16000户市民中大约有多少户对2016年的供暖情况满意和比较满意.(包括A层次和B层次)
-
科目: 来源: 题型:
查看答案和解析>>【题目】一般地,二元一次方程的解可以转化为点的坐标,其中x的值对应为点的横坐标,y的值对应为点的纵坐标,如二元一次方程x2y=0的解
和
可以转化为点的坐标A(0,0)和B(2,1).以方程x2y=0的解为坐标的点的全体叫做方程x2y=0的图象。
(1)写出二元一次方程x2y=0的任意一组解___,并把它转化为点C的坐标___;
(2)在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,如方程x2y=0的图象是由该方程所有的解转化成的点组成,在图中描出点A. 点B和点C,观察它们是否在同一直线上;
(3)取满足二元一次方程x+y=3的两个解,并把它们转化成点的坐标,画出二元一次方程x+y=3的图象;
(4)根据图象,写出二元一次方程x2y=0的图象和二元一次方程x+y=3的图象的交点坐标___,由此可得二元一次方程组
的解是___. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知AM∥CN,点B为平面内一点,AB⊥BC于B.

(1)如图1,直接写出∠A和∠C之间的数量关系___;
(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;
(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.
相关试题