【题目】如图(1),已知四边形ABCD的四条边相等,四个内角都等于90°,点E是CD边上一点,F是BC边上一点,且∠EAF=45°.
(1)求证:BF+DE=EF;
(2)若AB=6,设BF=x,DE=y,求y关于x的函数解析式,并写出x的取值范围;
(3)过点A作AH⊥FE于点H,如图(2),当FH=2,EH=1时,求△AFE的面积.
![]()
参考答案:
【答案】(1)见解析;(2)y=
(0≤x≤6);(3)
.
【解析】
(1)如图1中,将△ADE绕点A顺时针旋转90°得到△ABH.只要证明△AFH≌△AFE(SAS)即可解决问题;,
(2)利用(1)中结论,在Rt△ECF中,根据EF2=CF2+EC2,构建关系式即可;
(3)如图2中,将△ADE绕点A顺时针旋转90°得到△ABM.首先证明AH=AB,设AB=x,在Rt△EFC中,利用勾股定理构建方程即可解决问题;
(1)如图1中,将△ADE绕点A顺时针旋转90°得到△ABH,
![]()
∵四边形ABCD是正方形,
∴AB=AD=CD=BC,∠BAD=90°,
∵∠EAF=45°,
∴∠BAF+∠BAH=∠BAF+∠DAE=45°,
∴∠FAH=∠FAE=45°,
∵AF=AF,AH=AE,
∴△AFH≌△AFE(SAS),
∴EF=FH,
∵FH=BH+BF=DE+BF,
∴EF=BF+DE;
(2)∵AB=BC=CD=6,BF=x,DE=y,
∴EF=x+y,FC=6=﹣x,EC=6﹣y,
在Rt△ECF中,∵EF2=CF2+EC2,
∴(x+y)2=(6﹣x)2+(6﹣y)2,
∴y=
(0≤x≤6);
(3)如图2中,将△ADE绕点A顺时针旋转90°得到△ABM.
![]()
由(1)可知△AFM≌△AFH,
∵AB⊥FM,AH⊥EF,
∴AB=AH,
设AB=BC=CD=AD=x,
∵∠ABF=∠AHF=90°,
∵AF=AF.AB=AH,
∴Rt△AFB≌Rt△AFH(HL),
∴BF=FH=2,同理可证:DE=EH=1,
∴CF=x﹣2,EC=x﹣1,
在Rt△ECF中,∵EF2=CF2+EC2,
∴32=(x﹣2)2+(x﹣1)2,
∴x=
或
(舍弃),
∴S△AEF=
EFAH=
×3×
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线
与双曲线
交于
两点,且点
的横坐标为
.
(1)求
的值;(2)若双曲线
上一点
的纵坐标为8,求
的面积;(3)过原点
的另一条直线
交双曲线
于
两点(
点在第一象限),若由点
为顶点组成的四边形面积为
,求点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某校教学楼AB的后面有一建筑物CD,在距离CD的正后方30米的观测点P处,以22°的仰角测得建筑物的顶端C恰好挡住教学楼的顶端A,而在建筑物CD上距离地面3米高的E处,测得教学楼的顶端A的仰角为45°,求教学楼AB的高度.
(参考数据:sin22°≈
,cos22°≈
,tan22°≈
)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.

(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时∠BOM=_____;在图2中,OM是否平分∠CON?请说明理由;
(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;
(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,则t的值为_____(直接写出结果).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,若AC=FC.

(1)求证:AC是⊙O的切线:
(2)若BF=8,DF=
,求⊙O的半径r. -
科目: 来源: 题型:
查看答案和解析>>【题目】中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表: 抽取的200名学生海选成绩分组表
组别
海选成绩x
A组
50≤x<60
B组
60≤x<70
C组
70≤x<80
D组
80≤x<90
E组
90≤x<100
请根据所给信息,解答下列问题:

(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为 , 表示C组扇形的圆心角θ的度数为度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=
(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n) 
(1)求反比例函数与一次函数的解析式;
(2)连接OA、OB,求△AOB的面积;
(3)直接写出当y1<y2时,自变量x的取值范围.
相关试题