【题目】光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.
两地区与该农机租赁公司商定的每天的租赁价格见下表:
![]()
(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;
(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;
(3)如何分派才能使这50台联合收割机每天获得的租金最高?
参考答案:
【答案】(1)10≤x≤30(x是正整数);(2)有3种不同分配方案,当x=28时,即派往A地区甲型收割机2台,乙型收割机28台;派往B 地区甲型收割机18台,乙型收割机2台;当x=29时,即派往A地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台;
当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区;(3)农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割要全部派往B地区,可使公司获得的租金最高.
【解析】(1)由派往A地区x台乙型联合收割机,则可知派往A地区有30-x台甲型联合收割机,派往B地区有30-x台乙型和x-10台甲型联合收割机,根据题意即可求得y与x间的函数关系式及x的取值范围;
(2)结合y与x间的函数关系式即可得到关于x的不等式,再根据x的取值范围即可得到x可能的取值,得到分配方案;
(3)根据(2)问所得的方案,由一次函数的性质,结合x的取值范围即可得到合理建议.
(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台;派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台,
∴y=1600x+1800(30-x)+1200(30-x)+1600(x-10)=200x+74000,
其中,x的取值范围是:10≤x≤30(x是正整数).
(2)由题意,令200x+74000≥79600,
解不等式,得x≥28 ,
由于10≤x≤30,
∴x取28,29,30这三个值,
∴有3种不同分配方案.
当x=28时,即派往A地区甲型收割机2台,乙型收割机28台;派往B 地区甲型收割机18台,乙型收割机2台;
当x=29时,即派往A地区甲型收割机1台,乙型收割机29台;派往B 地区甲型收割机19台,乙型收割机1台;
当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区.
(3)由于一次函数y=200x+74000的值y是随着x的增大而增大的,所以,当x=30时,y取得最大值.
所以农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割要全部派往B地区,可使公司获得的租金最高.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在菱形ABCD中,∠BAD=60°
(1)如图1,点E为线段AB的中点,连接DE、CE,若AB=4,求线段EC的长;
(2)如图2,M为线段AC上一点(不与A、C重合),以AM为边向上构造等边三角形AMN,连接NC、DM,Q为线段NC的中点,连接DQ、MQ,判断DM与DQ的数量关系,并证明你的结论.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设
=n.
(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示
的值;
(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E在BC的延长线上,则下列条件中,不能判定AB∥CD的是( )

A.∠D+∠DAB=180°
B.∠B=∠DCE
C.∠1=∠2.
D.∠3=∠4 -
科目: 来源: 题型:
查看答案和解析>>【题目】某“希望学校”修建了一栋4层的教学大楼,每层楼有6间教室,进出这栋大楼共有3道门(两道大小相同的正门和一道侧门).安全检查中,对这3道门进行了测试:当同时开启一道正门和一道侧门时,2分钟内可以通过400名学生,若一道正门平均每分钟比一道侧门可多通过40名学生.
(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定:在紧急情况下全大楼的学生应在5分钟内通过这3道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这3道门是否符合安全规定?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,矩形纸片ABCD的边长分别为a、b(a<b),点M、N分别为边AD、BC上两点(点A、C除外),连接MN.
(1)如图②,分别沿ME、NF 将MN两侧纸片折叠,使点A、C分别落在MN上的A′、C′处,直接写出ME与FN的位置关系;
(2)如图③,当MN⊥BC 时,仍按(1)中的方式折叠,请求出四边形A′EBN与四边形C′FDM 的周长(用含a的代数式表示),并判断四边形A′EBN与四边形C′FDM周长之间的数量关系;
(3)如图④,若对角线BD与MN交于点O,分别沿BM、DN将MN两侧纸片折叠,折叠后,点A、C恰好都落在点O处,并且得到的四边形BNDM是菱形,请你探索a、b之间的数量关系.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
的解析表达式为
,且
与
轴交于点
.直线
经过点
、
,直线
,
交于点
.(1)求点
的坐标;(2)求直线
的解析表达式;(3)求
的面积;(4)在直线
上存在异于点
的另一个点
,使得
与
的面积相等,求
点的坐标.
相关试题