【题目】如图:AB⊥BC,DC⊥BC,E在BC上,AB=EC,BE=CD,EF⊥AD于F.
(1)求证:F是AD中点;
(2)求∠AEF的度数.
![]()
参考答案:
【答案】(1)证明见解析;(2)45°
【解析】试题分析:(1)由题意,AB⊥BC,DC⊥BC,AB=EC,BE=CD,可证△ABE≌△ECD,可证AE=ED,且EF⊥AD,即可得证F是AD是中点.
(2)由(1)可推出,△AED为等腰直角三角形,所以∠AEF=45°.
试题解析:由题意,AB⊥BC,DC⊥BC,AB=EC,BE=CD,
所以△ABE≌△ECD,
所以AE=ED,
又EF⊥AD,
即可得证F是AD是中点;
(2)由(1)得,∠AEB+∠CED=90°;
所以∠AED=90°,
所以△AED为等腰直角三角形,
所以∠AEF=45°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣
x2﹣
x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是( ).

A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.

(1)求证:PF平分∠BFD.
(2)若tan∠FBC=
,DF=
,求EF的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )
A. m<1B. m>1C. m<2D. m>0
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题4分)(1)在图1中, 求∠A1+∠B1+∠C1+∠A2+∠B2+∠C2的度数= .

(2)我们作如下规定:
图1称为2环三角形,它的内角和为∠A1+∠B1+∠C1+∠A2+∠B2+∠C2;
图2为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2;
图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1+∠A2+∠B2+∠C2+∠D2+∠E2;
想一想:2环n边形的内角和为 度(只要求直接写出结论).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠AFE的度数.

相关试题