【题目】如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.
![]()
(1)求证:PF平分∠BFD.
(2)若tan∠FBC=
,DF=
,求EF的长.
参考答案:
【答案】(1)详见解析;(2)
.
【解析】
试题分析:(1)根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,根据矩形的性质得到EF=BC,根据切割线定理得到PD2=DFCD,于是得到结论.
试题解析:(1)连接OP,BF,PF,
∵⊙O与AD相切于点P,
∴OP⊥AD,
∵四边形ABCD的正方形,
∴CD⊥AD,
∴OP∥CD,
∴∠PFD=∠OPF,
∵OP=OF,
∴∠OPF=∠OFP,
∴∠OFP=∠PFD,
∴PF平分∠BFD;
(2)连接EF,
∵∠C=90°,
∴BF是⊙O的直径,
∴∠BEF=90°,
∴四边形BCFE是矩形,
∴EF=BC,
∵AB∥OP∥CD,BO=FO,
∴OP=
AD=
CD,
∵PD2=DFCD,即(
)2=
CD,
∴CD=4
,
∴EF=BC=4
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】数据1、2、5、3、5、3、3的中位数是
A. 1 B. 2 C. 3 D. 5
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=﹣
x2﹣
x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;
(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;
(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是( ).

A. 4个 B. 3个 C. 2个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:AB⊥BC,DC⊥BC,E在BC上,AB=EC,BE=CD,EF⊥AD于F.
(1)求证:F是AD中点;
(2)求∠AEF的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数y=(m﹣1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是( )
A. m<1B. m>1C. m<2D. m>0
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题4分)(1)在图1中, 求∠A1+∠B1+∠C1+∠A2+∠B2+∠C2的度数= .

(2)我们作如下规定:
图1称为2环三角形,它的内角和为∠A1+∠B1+∠C1+∠A2+∠B2+∠C2;
图2为2环四边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠A2+∠B2+∠C2+∠D2;
图3称为2环5五边形,它的内角和为∠A1+∠B1+∠C1+∠D1+∠E1+∠A2+∠B2+∠C2+∠D2+∠E2;
想一想:2环n边形的内角和为 度(只要求直接写出结论).
相关试题