【题目】情境观察:
如图1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分别为D、E,CD与AE交于点F.
①写出图1中所有的全等三角形 ;
②线段AF与线段CE的数量关系是 .
问题探究:
如图2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足为D,AD与BC交于点E.
求证:AE=2CD.
拓展延伸:
如图3,△ABC中,∠BAC=45°,AB=BC,点D在AC上,∠EDC=
∠BAC,DE⊥CE,垂足为E,DE与BC交于点F.求证:DF=2CE.
要求:请你写出辅助线的作法,并在图3中画出辅助线,不需要证明.
参考答案:
【答案】1.①△ABE≌△ACE,△ADF≌△CDB;②AF=2CE.见解析;2.见解析;3.见解析
【解析】
情境观察:①由全等三角形的判定方法容易得出结果;
②由全等三角形的性质即可得出结论;
问题探究:延长AB、CD交于点G,由ASA证明△ADC≌△ADG,得出对应边相等CD=GD,即CG=2CD,证出∠BAE=∠BCG,由ASA证明△ADC≌△CBG,得出AE=CG=2CD即可.
拓展延伸:作DG⊥BC交CE的延长线于G,同上证明三角形全等,得出DF=CG即可.
①图1中所有的全等三角形为△ABE≌△ACE,△ADF≌△CDB;故答案为:△ABE≌△ACE,△ADF≌△CDB
②线段AF与线段CE的数量关系是:AF=2CE;故答案为:AF=2CE.
问题探究:
证明:延长AB、CD交于点G,如图2所示:
∵AD平分∠BAC,
∴∠CAD=∠GAD,
∵AD⊥CD,
∴∠ADC=∠ADG=90°,
在△ADC和△ADG中,
,
∴△ADC≌△ADG(ASA),
∴CD=GD,即CG=2CD,
∵∠BAC=45°,AB=BC,
∴∠ABC=90°,
∴∠CBG=90°,
∴∠G+∠BCG=90°,
∵∠G+∠BAE=90°,
∴∠BAE=∠BCG,
在△ABE和△CBG中,
,
∴△ADC≌△CBG中(ASA),
∴AE=CG=2CD.
拓展延伸:
解:作DG⊥BC交CE的延长线于G,
如图3所示.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】初二年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:

(1)在这次评价中,一共抽查了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整;
(4)如果全市有6000名初二学生,那么在试卷评讲课中,“独立思考”的初二学生约有多少人?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同.
(1)A,B两种型号的自行车的单价分别是多少?
(2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有4个不同的操作实验题目,物理用番号①、②、③、④代表,化学用字母a、b、c、d表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目.
(1)请用树形图法或列表法,表示某个同学抽签的各种可能情况.
(2)小张同学对物理的①、②和化学的b、c号实验准备得较好,他同时抽到两科都准备的较好的实验题目的概率是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=kx+4(k≠0)与x轴、y轴分别交于点B,A,直线y=-2x+1与y轴交于点C,与直线y=kx+4交于点D,△ACD的面积是
.(1)求直线AB的表达式;
(2)设点E在直线AB上,当△ACE是直角三角形时,请直接写出点E的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列四组条件中,不能判定四边形ABCD是平行四边形的是

A.
,
B.
,
C.
,
D.
,
相关试题