【题目】某县为了了解2013年初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向
A.读普通高中; | B.读职业高中 | C.直接进入社会就业; | D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问: |
![]()
![]()
(1)该县共调查了 名初中毕业生;
(2)将两幅统计图中不完整的部分补充完整;
(3)若该县2013年初三毕业生共有4500人,请估计该县今年的初三毕业生中读普通高中的学生人数.
参考答案:
【答案】解:(1)100。
(2)补全统计图如下;
![]()
![]()
(3)4500×40%=1800名,
答:估计该县今年的初三毕业生中读普通高中的学生人数是1800。
【解析】
(1)根据A的人数与所占的百分比列式进行计算即可得解:40÷40%=100名。
(2)求出B的人数:100×30%=30名,再求出C所占的百分比:
×100%=25%,然后补全统计图即可。
(3)用过总人数乘以A所占的百分比40%,计算即可得解。
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年秋季,长白山土特产喜获丰收,某土特产公司组织10辆汽车装运甲、乙、丙三种土特产去外地销售,按计划10辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的汽车有x辆,装运乙种土特产的汽车有y辆,根据下表提供的信息,解答以下问题.

(1)装运丙种土特产的车辆数为(用含x、y的式子表示);
(2)用含x、y的式子表示这10辆汽车共装运土特产的吨数;
(3)求销售完装运的这批土特产后所获得的总利润(用含x、y的式子表示).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.

(1)求证:CD是⊙O的切线;
(2)若AB=4,求图中阴影部分的面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.

(1)a= ,b= ,c= ;
(2)若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合;
(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)
(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A,B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同,销售中发现A型汽车的每周销量yA(台)与售价x(万元/台)满足函数关系式yA=﹣x+20,B型汽车的每周销量yB(台)与售价x(万元/台)满足函数关系式yB=﹣x+14.
(1)求A、B两种型号的汽车的进货单价;
(2)已知A型汽车的售价比B型汽车的售价高2万元/台,设B型汽车售价为t万元/台.每周销售这两种车的总利润为W万元,求W与t的函数关系式,A、B两种型号的汽车售价各为多少时,每周销售这两种车的总利润最大?最大总利润是多少万元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,CE⊥AB于点E,AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于点G,
求证:(1)DF∥BC;
(2)FG=FE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,点P是正方形ABCD的BC边上的一点,以DP为边长的正方形DEFP与正方形ABCD在BC的同侧,连接AC,FB.

(1)请你判断FB与AC又怎样的位置关系?并证明你的结论;
(2)若点P在射线CB上运动时,如图②,判断(1)中的结论FB与AC的位置关系是否仍然成立?并说明理由;
(3)当点P在射线CB上运动时,请你指出点E的运动路线,不必说明理由.
相关试题