【题目】王老师获得一张联欢晚会的门票,想奖给班级学校优秀的同学,通过考察,小明和小刚脱颖而出,但问题是只有一张门票,小明和小刚想通过抽取扑克牌的游戏来决定谁去看晚会,他们各自提出了一个方案:
(1)小明的方案:将红桃2、3、4、5四张牌背面朝上,小明先抽一张,记下牌面数字后放回,小刚再从中抽一张,若两张牌上的数字之和是奇数,则小明看晚会,否则小刚看晚会,你认为小明的方案公平吗?请用列表法或画树状图的方法说明;
(2)小刚将小明的方案修改为只用红桃2、3、4三张牌,抽取方式规则不变,小刚的方案公平吗?(只回答,不说明理由)
参考答案:
【答案】(1)甲同学的方案不公平,理由见解析;(2)不公平.
【解析】试题分析:(1)依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.
(2)依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,比较即可.
解:(1)甲同学的方案不公平.
理由如下:
列表法,
小明 小刚 | 2 | 3 | 4 | 5 |
2 | —— | (2,3) | (2,4) | (2,5) |
3 | (3,2) | —— | (3,4) | (3,5) |
4 | (4,2) | (4,3) | —— | (4,5) |
5 | (5,2) | (5,3) | (5,4) | —— |
所有可能出现的结果共有12种,其中抽出的牌面上的数字之和为奇数的有:8种,故小明获胜的概率为:
,则小刚获胜的概率为:
,
故此游戏两人获胜的概率不相同,即他们的游戏规则不公平;
(2)不公平.理由如下:
小明 小刚 | 2 | 3 | 4 |
2 | —— | (2,3) | (2,4) |
3 | (3,2) | —— | (3,4) |
4 | (4,2) | (4,3) | —— |
所有可能出现的结果共有6种,其中抽出的牌面上的数字之和为奇数的有:4种,故小明获胜的概率为:
,则小刚获胜的概率为:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.若点Q的运动速度为v厘米/秒,则当△BPD与△CQP全等时,v的值为________厘米/秒.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中,不正确的是( )
A.8的立方根是2
B.﹣8的立方根是﹣2
C.0的立方根是0
D.125的立方根是±5 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).

(1)在图中作出△ABC关于x轴的对称图形△A1B1C1 ;
(2)写出点A1 , B1 , C1的坐标(直接写答案), A1________ ,B1________ ,C1________;
(3)求△ABC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足
,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°. 求证:∠APB是∠MON的智慧角;
(2)如图3,C是函数
图象上的一个动点,过点C的直线CD分别交
轴和
轴于点A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AC⊥BC,BD⊥AD,AC 与BD 交于O,AC=BD.
求证:(1)BC=AD;
(2)△OAB是等腰三角形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.
(1)若∠B=70°,则∠NMA的度数是 .
(2)连接MB,若AB=8cm,△MBC的周长是14cm.
①求BC的长;
②在直线MN上是否存在点P,使由P,B,C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.

相关试题