【题目】某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.
(1)如图1,测得∠1=∠2,可判定a∥b吗?请说明理由;
(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗?请说明理由;
(3)如图3,若要使a∥b,则∠1与∠2应该满足什么关系式?请说明理由.
![]()
参考答案:
【答案】(1)a∥b(2)能(3)∠1+2∠2=180°
【解析】
(1)根据平行线的判定得出即可;
(2)求出∠1和∠4的度数,再根据平行线的判定推出即可;
(3)根据折叠得出∠3=∠4,根据平行线的性质得出∠1+∠3+∠4=180°,∠2=∠4,即可得出答案.
(1)a∥b,
理由是:∵∠1=∠2,
∴a∥b(内错角相等,两直线平行);
(2)能,
理由是:∵∠1=∠2,∠3=∠4,∠1+∠2=180°,∠3+∠4=180°,
∴∠1=∠2=90°,∠3=∠4=90°,
∴∠1=∠4,
∴a∥b;
(3)∠1+2∠2=180°,
理由是:根据折叠得:∠3=∠4,
∵a∥b,
∴∠1+∠3+∠4=180°,∠2=∠4,
∴∠1+2∠2=180°.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知BC是△ABD的角平分线,BC=DC,∠A=∠E=30°,∠D=50°.
(1)写出AB=DE的理由;
(2)求∠BCE的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.
(1)求证:GF=GC;
(2)用等式表示线段BH与AE的数量关系,并证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与
轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:① 4ac<b2;② 方程ax2+bx+c=0的两个根是
;③ 3a+c>0;④ 当y>0时,x的取值范围是-1≤x<3;⑤ 当x<0时,y随x增大而增大;其中结论正确有__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是由7块颜色不同的正方形组成的长方形,已知中间小正方形的边长为1,这个长方形的面积为( )

A.45B.48C.63D.64
-
科目: 来源: 题型:
查看答案和解析>>【题目】我们在小学已经学过了“对边分别平行的四边形叫做平行四边形”,如图1,平行四边形MNPQ的一边PQ作左右平移,图2反映它的边NP的长度(cm)随时间t(s)变化而变化的情况,请解答下列问题:
(1)在这个变化过程中,自变量是______,因变量是______;
(2)观察图2,PQ向左平移前,边NP的长度是______cm,请你根据图象呈现的规律写出0至5秒间l与t的关系式;
(3)填写下表,并根据表中呈现的规律写出8至14秒间1与t的关系式.
PQ边的运动时间/s
8
9
10
11
12
13
14
NP的长度/cm
18
15
12
______
6
3
0

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A、D在直线l的同侧.
(1)如图1,在直线l上找一点C.使得线段AC+DC最小(请通过画图指出点C的位置);
(2)如图2,在直线l上取两点B、E,恰好能使△ABC和△DCE均为等边三角形.M、N分别是线段AC、BC上的动点,连结DN交AC于点G,连结EM交CD于点F.
①当点M、N分别是AC、BC的中点时,判断线段EM与DN的数量关系,并说明理由;
②如图3,若点M、N分别从点A和B开始沿AC和BC以相同的速度向点C匀速运动,当M、N与点C重合时运动停止,判断在运动过程中线段GF与直线1的位置关系,并说明理由.

相关试题