【题目】解不等式组:
,并把它的解在数轴上表示出来. ![]()
参考答案:
【答案】解:不等式组
由①得,x>1﹣3,x>﹣2;
由②得,x+2x﹣2≤1,x≤1;
∴其解集为:﹣2<x≤1;
在数轴上表示为:
故答案为:﹣2<x≤1.![]()
【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.
【考点精析】利用不等式的解集在数轴上的表示和一元一次不等式组的解法对题目进行判断即可得到答案,需要熟知不等式的解集可以在数轴上表示,分三步进行:①画数轴②定界点③定方向.规律:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,等于用实心圆点,不等于用空心圆圈;解法:①分别求出这个不等式组中各个不等式的解集;②利用数轴表示出各个不等式的解集;③找出公共部分;④用不等式表示出这个不等式组的解集.如果这些不等式的解集的没有公共部分,则这个不等式组无解 ( 此时也称这个不等式组的解集为空集 ).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2 , 四边形ABCD面积是11cm2 , 则①②③④四个平行四边形周长的总和为( )

A.48cm
B.36cm
C.24cm
D.18cm -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是半圆直径,半径OC⊥AB于点O,AD平分∠CAB交弧BC于点D,连接CD、OD,给出以下四个结论:①AC∥OD;②CE=OE;③△ODE∽△ADO;④2CD2=CEAB.其中正确结论的序号是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数
(k≠0)的图象上. 
(1)求a的值;
(2)直接写出点P′的坐标;
(3)求反比例函数的解析式. -
科目: 来源: 题型:
查看答案和解析>>【题目】根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):

解答下列问题:
(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;
(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.

(1)求舟山与嘉兴两地间的高速公路路程;
(2)两座跨海大桥的长度及过桥费见下表:大桥名称
舟山跨海大桥
杭州湾跨海大桥
大桥长度
48千米
36千米
过桥费
100元
80元
我省交通部门规定:轿车的高速公路通行费y(元)的计算方法为:y=ax+b+5,其中a(元/千米)为高速公路里程费,x(千米)为高速公路里程(不包括跨海大桥长),b(元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a.
相关试题