【题目】在长方形ABCD中,
,
,点P从A开始沿边AB向终点B以
的速度移动,与此同时,点Q从点B开始沿边BC向终点C以
的速度移动,如果P,Q分别从A,B同时出发,当点Q运动到点C时,两点停止运动
设运动时间为t秒.
填空:
________,
________
用含t的代数式表示
:
当t为何值时,PQ的长度等于5cm?
是否存在t的值,使得五边形APQCD的面积等于
?若存在,请求出此时t的值;若不存在,请说明理由.
参考答案:
【答案】(1)2tcm;(5-t)cm(2)当t=2秒时,PQ的长度等于5cm(3)存在t=1秒,能够使得五边形APQCD的面积等于26cm2
【解析】
(1)根据P、Q两点的运动速度可得BQ、PB的长度;
(2)根据勾股定理可得PB2+BQ2=QP2,代入相应数据解方程即可;
(3)根据题意可得△PBQ的面积为长方形ABCD的面积减去五边形APQCD的面积,再根据三角形的面积公式代入相应线段的长即可得到方程,再解方程即可.
(1)∵P从点A开始沿边AB向终点B以1cm/s的速度移动,∴AP=tcm.
∵AB=5cm,∴PB=(5﹣t)cm.
∵点Q从点B开始沿边BC向终点C以2cm/s的速度移动,∴BQ=2tcm;
(2)由题意得:(5﹣t)2+(2t)2=52,解得:t1=0,t2=2;
答:当t=0秒或2秒时,PQ的长度等于5cm.
(3)存在t=1秒,能够使得五边形APQCD的面积等于26cm2.理由如下:
长方形ABCD的面积是:5×6=30(cm2),使得五边形APQCD的面积等于26cm2,则△PBQ的面积为30﹣26=4(cm2),(5﹣t)×2t
4,解得:t1=4(不合题意舍去),t2=1.
即当t=1秒时,使得五边形APQCD的面积等于26cm2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A(4,n),B(2,4)是一次函数y=kx+b的图象和反比例函数
的图象的两个交点;
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求不等式kx+b
<0的解集(请直接写出答案). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
为两条相互平行的直线
,
之间一点,
和
的角平分线相交于
,
.

(1)求证:
;(2)连结
当
且
时,求
的度数; (3)若
时,将线段
沿直线
方向平移,记平移后的线段为
(
,
分别对应
、
当
时,请直接写出
的度数_______. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转
时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H;
(ⅰ)求证:BD⊥CF;
(ⅱ)当AB=2,AD=
时,求线段DH的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线
与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线
与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)连接AC,在x轴上是否存在点Q,使以P、B、Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分14分)如图,在正方形ABCD中,AB=5.点E为BC边上一点(不与点B重合),点F为CD边上一点,线段AE、BF相交于点O,其中AE=BF.

(1)求证:AE⊥BF;
(2)若OA-OB=1,求OA的长及四边形OECF的面积;
(3)连接OD,若△AOD是以AD为腰的等腰三角形,求AE的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:
小明在学习了二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2
=(1+
)2.善于思考的小明进行了以下探索:设a+b
=(m+n
)2(其中a,b,m,n均为正整数),则有a+b
=m2+2n2+2mn
.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分形如a+b
的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:
(1)当a,b,m,n均为正整数时,若a+b
=(m+n
)2,用含m,n的式子分别表示a,b,得a=__________,b=__________;(2)利用所探索的结论,找一组正整数a,b,m,n填空:________+________
=(________+________
)2;(3)若a+4
=(m+n
)2,且a,m,n均为正整数,求a的值.
相关试题