【题目】如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.
![]()
(1)求该抛物线的解析式;
(2)求该抛物线的对称轴以及顶点坐标.
参考答案:
【答案】(1)y=x2﹣2x﹣3;(2)该抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4).
【解析】
试题分析:(1)由题意抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,利用待定系数法求出b,c的值,得出函数解析式即可;
(2)利用配方法化为顶点式求得对称轴与顶点坐标即可.
解:(1)∵抛物线y=x2+bx+c与x轴的两个交点分别为A(﹣1,0),B(3,0),
∴
,
解得
.
∴所求抛物线的解析式为:y=x2﹣2x﹣3;
(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,
∴该抛物线的对称轴为直线x=1,顶点坐标为(1,﹣4).
-
科目: 来源: 题型:
查看答案和解析>>【题目】某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的重量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:
与标准重量的差值(单位:g)
﹣5
﹣2
0
1
3
6
袋数
1
4
3
4
5
3
(1)计算这批样品的平均重量,判断它比标准重量重还是轻多少?
(2)若标准重量为450克,则这批样品的总重量是多少?
(3)若这种食品的合格标准为450±5克,则这批样品的合格率为 (直接填写答案)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,连接DE交AC于F,AD=4,AB=6.
(1)求证:△ADC∽△ACB;
(2)求AC的值;
(3)求
的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】“十一”国庆期间出租车司机小李某天下午的营运始终在长安街(自东向西或自西向东)上进行,如果规定向东为正,向西为负,他这天下午从天安门出发,行车里程(单位:千米)如下:
+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.
(1)小李将最后一名乘客送抵目的地时,小李距天安门有多远?
(2)如果汽车耗油量为0.08升/千米,这天下午小李共耗油多少升?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了提高科技创新意识,我市某中学举行了“2016年科技节”活动,其中科技比赛包括“航模”、“机器人”、“环保”“建模”四个类别(每个学生只能参加一个类别的比赛),各类别参赛人数统计如图:

请根据以上信息,解答下列问题:
(1)全体参赛的学生共有人;
(2)将条形统计图补充完整;
(3)“建模”在扇形统计图中的圆心角是°. -
科目: 来源: 题型:
查看答案和解析>>【题目】同学们都知道:|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:

(1)数轴上表示5与﹣2两点之间的距离是
(2)数轴上表示x与2的两点之间的距离可以表示为 .
(3)同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是 .
(4)由以上探索猜想|x+10|+|x+2|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
(5)由以上探索猜想|x+10|+|x+2|+|x﹣8|+|x﹣10|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个盒子里有标号分别为1,2,3,4的四个球,这些球除标号数字外都相同.
(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的球的概率;
(2)甲、乙两人用这六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.
相关试题