【题目】如图,在矩形ABCD中,AD=
AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②AB=HF,③BH=HF;④BC﹣CF=2HE;⑤OE=OD;其中正确结论的序号是![]()
参考答案:
【答案】①③⑤
【解析】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,
∴△ABE是等腰直角三角形,∴AE=
AB,∵AD=
AB,∴AE=AD,
在△ABE和△AHD中,![]()
∴△ABE≌△AHD(AAS),
∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=
∴∠CED=180°-45°-67.5°=67.5°,∴∠AED=∠CED,故①正确;
∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故②错误;
∵∠EBH=90°-67.5°=22.5°,∴∠EBH=∠OHD,
在△BEH和△HDF中,![]()
∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;
∵HE=AE-AH=BC-CD,∴BC-CF=BC-(CD-DF)=BC-(CD-HE)=(BC-CD)+HE=HE+HE=2HE.故④正确;
∵AB=AH,∵∠AHB=
∠OHE=∠AHB(对顶角相等),
∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°-67.5°=22.5°,∠ODH=67.5°-45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故⑤正确;
综上所述,结论正确的是①③④⑤共4个.
故答案为①③④⑤.
①根据角平分线的定义可得∠BAE=∠DAE=45°,可得出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=
AB,从而得AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;
②判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到②错误.
③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;
④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE-AH=BC-CD,BC-CF==2HE.判断出④正确;
⑤求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD=OH,判断出⑤正确.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0.其中错误的是( )
A.①②③B.①②④C.②③④D.①③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知三角形的两边长分别为1和4,且第三边长为整数,则第三边长为( )
A.3B.4C.5D.6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD为正方形ABCD的对角线,BE平分∠DBC,交DC于点E,将△BCE绕点C顺时针旋转90°得到△DCF.若CE=1cm,则BF=cm.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,四边形ABCD为⊙O内接四边形,连接AC、CO、BO,点C为弧BD的中点.
(1)求证:∠DAC=∠ACO+∠ABO;
(2)如图2,点E在OC上,连接EB,延长CO交AB于点F,若∠DAB=∠OBA+∠EBA.求证:EF=EB;
(3)在(2)的条件下,如图3,若OE+EB=AB,CE=2,AB=13,求AD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列叙述中错误的一项是( ).
A.三角形的中线、角平分线、高都是线段.
B.三角形的三条高线中至少存在一条在三角形内部.
C.只有一条高在三角形内部的三角形一定是钝角三角形.
D.三角形的三条角平分线都在三角形内部.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.
(1)今年5月份A款汽车每辆售价多少万元?
(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知B款汽车每辆进价为7.5万元,每辆售价为10.5万元,A款汽车每辆进价为6万元,若卖出这两款汽车15辆后获利不低于38万元,问B款汽车至少卖出多少辆?
相关试题