【题目】(1)如图1,在正方形ABCD中,E是AB上一点,G是AD上一点,∠ECG=45°,求证EG=BE+GD.
![]()
(2)请用(1)的经验和知识完成此题:如图2,在四边形ABCD中,AG//BC(BC>AG),∠B=90°,AB=BC=12,E是AB上一点,且∠ECG=45°,BE=4,求EG的长?
参考答案:
【答案】(1)证明见解析;(2)EG=10.
【解析】
(1)延长AD至F,使DF=BE,连接CF,根据正方形的性质,可直接证明△EBC≌△FDC,从而得出∠BCE=∠DCF,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可证出EG=BE+GD;
(2)过C作CD⊥AG,交AG延长线于D,则四边形ABCD是正方形,设EG=x,则AE=8,根据(1)可得:AG=16-x,在直角△ADE中利用勾股定理即可求解.
(1)证明:如图3所示,延长AD至F,使DF=BE,连接CF,
![]()
∵四边形ABCD是正方形,
∴BC=DC,∠ABC=∠ADC=∠BCD=90°,
∵∠CDF=180°-∠ADC,
∴∠CDF=90°,
∴∠ABC=∠CDF,
∵BE=DF,
∴△EBC≌△FDC,
∴∠BCE=∠DCF,EC=FC,
∵∠ECG=45°,
∴∠BCE+∠GCD=90°-∠ECG=90°-45°=45°,
∴∠GCD+∠DCF=∠FCG=45°,
∴∠ECG=∠FCG.
∵GC=GC,EC=FC,
∴△ECG≌△FCG,
∴EG=GF.
∵GF=GD+DF= BE+GD,
∴EG= BE+GD.
(2)解:如图4,过C作CD⊥AG,交AG延长线于D,
![]()
在直角梯形ABCD中,
∵AG∥BC,∠A=∠B=90°,
又∠CDA=90°,AB=BC,
∴四边形ABCD为正方形.
∴AD=AB=BC=12.
已知∠ECG=45°,根据(1)可知,EG=BE+DG,
设EG=x,则AG=AD-DG= AD-(EG-BE)=12-(x-4)=16-x,
∴AE=12-BE=12-4=8.
在Rt△AEG中
∵EG2=AG2+AE2,
即x2=(16-x)2+82,
解得:x=10.
∴EG=10.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点D,E分别是△ABC的BC,AC边的中点.
(1)如图①,若AB=10,求DE的长;
(2)如图②,点F是AB边上的一点,FG//AD,交ED的延长线于点G.求证:AF=DG

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中有一点A(4,-1),将点A向左平移5个单位再向上平移5个单位得到点B,直线
过点A、B,交x轴于点C,交y轴于点D, P是直线上的一个动点,通过研究发现直线
上所有点的横坐标x与纵坐标y 都是二元一次方程x+y=3的解.
①直接写出点B,C,D的坐标;B_______, C_________, D________
②求

③当
时,求点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c经过点A(-1,0),点B(3,0)和点C(0,3).

(1)求抛物线的解析式和顶点E的坐标;
(2)点C是否在以BE为直径的圆上?请说明理由;
(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R的坐标,若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AE.

(1)如图1,求证:AD∥BC
(2)若∠DAE和∠DCE的角平分线相交于点F.如图2,若∠BAE=80°,求∠F的度数
(3)如图3,∠DCE的角平分线的平分线交AE于点G,连接AC,若∠BAC=∠DAE,∠AGC=3∠CAE,则∠CAE的度数为________(直接写出结果)
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班要购买一批篮球和足球.已知篮球的单价比足球的单价贵40元,花1500元购买的篮球的个数与花900元购买的足球的个数恰好相等.
(1)篮球和足球的单价各是多少元?
(2)若该班恰好用完1000元购买的篮球和足球,则购买的方案有哪几种?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.

(1)AD与BC平行吗?请说明理由;
(2)AB与EF的位置关系如何?为什么?
(3)若AF平分∠BAD,试说明:∠E+∠F=90°
相关试题