【题目】某工厂有新、旧两台机器,上半年,新机器平均每天比旧机器多生产50件产品,新机器生产600件产品所用的时间与旧机器生产450件产品所用的时间相同.
(1)求上半年新、旧机器日均产品数;
(2)下半年,新机器提高了生产效率,而旧机器由于不断损耗,生产效率降低,经测算,新机器日均产品数提高的百分数是旧机器日均产品数降低的百分数的2倍,结果新机器生产960件产品所用的时间与旧机器生产540件产品所用的时间相同,求新机器日均产品比旧机器多多少件?
参考答案:
【答案】(1)上半年新、旧机器日均产品数分别是200件、150件;(2)新机器日均产品比旧机器多105件
【解析】
(1)设新机器平均每天生产x件产品,则旧机器每天生产(x-50)件产品,根据“新机器生产600件产品所用的时间与旧机器生产450件产品所用的时间相同”,列出方程即可解决问题.
(2)设旧机器日均产品数降低的百分数为a,则新机器日均产品数提高的百分数是2m.根据“新机器生产960件产品所用的时间与旧机器生产540件产品所用的时间相同”列出方程并解答.
(1)设上半年旧机器日均产品数x件,则新机器日均产品数(50+x)件。
根据题意得:
=![]()
解得:x=150
经检验,x=150是原方程的解。
答:上半年新、旧机器日均产品数分别是200件、150件。
(2)设旧机器日均产品数降低的百分数是m,则新机器日均产品数提高的百分数是2m。
由题意得:
=![]()
解得:m=![]()
经检验,m=
是原方程的解。
200(1+2m)=200
(1+2
)=240
150(1-m)=150
(1-
)=135
240-135=105(件)
答:新机器器日均产品比旧机器多105件。
-
科目: 来源: 题型:
查看答案和解析>>【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,设先发出车辆行驶的时间为 xh , 两车之间的距离为ykm,图中的折线表示 y与x之间的函数关系。根据图象回答下列问题:
(1)慢车的速度为________ km/h,快车的速度为__________km/h;
(2)求线段CD所表示的y与x之间的函数关系式,并写出自变量 x的取值范围;
(3)当 x取何值时,两车之间的距离为300 km?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
,
,
,
,
平分

(1)说明:
;(2)求
的度数. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知直线y=kx+3(k<0)分别交x轴、y轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作x轴的垂线交直线AB于点C,设运动时间为t秒.
(1)当k=-1时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出t=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求t的值.
(2)当k=
时,设以C为顶点的抛物线y=(x+m)2+n与直线AB的另一交点为D(如图2),①求CD的长;
②设△COD的OC边上的高为h,当t为何值时,h的值最大?

-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:任意两个数a,b,按规则c=
a+b得到一个新数c,称所得的新数c为数a,b的“传承数。”(1)若a=1,b=2,求a,b的“传承数”c;
(2)若a=1,b=
,且
+3x+1=0,求a,b的“传承数”c;(3)若a=2n+1,b=n1,且a,b的“传承数”c值为一个整数,则整数n的值是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】对任意一个三位数
,如果
满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为
.例如
,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以
.(1)计算:
和
;(2)若
是“相异数”,证明:
等于
的各数位上的数字之和. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为( )

A.5B.6C.4D.3
相关试题