【题目】如图,在平面直角坐标系中,已知两点A(3,0),B(0,4),点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP交于点N.
![]()
(1)点C的坐标为: ;
(2)求证:BM=BN;
(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.
参考答案:
【答案】(1)(4,7)(2)见解析(3)见解析
【解析】
(1)过点C作CE⊥y轴于点E,根据AAS证明△AOB≌△BEC,根据全等三角形的性质即可得到点C的坐标;
(2)根据全等三角形的性质和等量替换可得∠1=∠2,根据ASA证明△ABM≌△CBN,即可证得BM=BN;
(3)根据SAS证明△DAH≌△GAH,根据全等三角形的性质即可求解.
(1)过点C作CE⊥y轴于点E,故∠BEC=90°,
∴∠BEC=∠AOB,
∴∠ABC=90°,
∴∠ABO+∠CBE=90°,
∵∠ABO+∠BAO=90°
∴∠CBE=∠BAO
∴△AOB≌△BEC(AAS)
∴CE=OB=4,BE=OA=3,
∴OE=OB+BE=7,
∴C点坐标为(4,7)
(2)∵△AOB≌△BEC
∴BE=OA=OP,CE=BO,
∴PE=OB=CE,
∴∠EPC=45°,∠APC=90°,
∴∠1=∠2,
∴△ABM≌△CBN(ASA)
∴BM=BN,
(3)点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,
∴AD=AC,AG=AC,
∴AD=AG,
∵∠1=∠5,∠1=∠6,
∴∠5=∠6,
在△DAH与△GAH中![]()
∴△DAH≌△GAH(SAS)
∴D,G关于x轴对称.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读材料:
在一个三角形中,各边和它所对角的正弦的比相等,
=
=
,利用上述结论可以求解如下题目:
在△ABC中,∠A、∠B、∠C的对边分别为a,b,c.若∠A=45°,∠B=30°,a=6,求b.
解:在△ABC中,∵
=
∴b=
=
=
=3
.
理解应用:
如图,甲船以每小时30
海里的速度向正北方向航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,且乙船从B1处按北偏东15°方向匀速直线航行,当甲船航行20分钟到达A2时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10
海里.
(1)判断△A1A2B2的形状,并给出证明;
(2)求乙船每小时航行多少海里? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,CA=CB,CD=CE,∠ACB=∠DCE=α.
(1)求证:BE=AD;

(2)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图②,判断△CPQ的形状,并加以证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=
CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.
(1)用关于x的代数式表示BQ,DF.
(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.
(3)在点P的整个运动过程中,
①当AP为何值时,矩形DEGF是正方形?
②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案). -
科目: 来源: 题型:
查看答案和解析>>【题目】为创建“美丽乡村”,某村计划购买甲、乙两种树苗共400棵,对本村道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.
若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?
若购买甲种树苗的金额不少于购买乙种树苗的金额,则至少应购买甲种树苗多少棵? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,
,点
是直线
上一个动点(不与
重合),点
是
边上一个定点, 过点
作
,交直线
于点
,连接
,过点
作
,交直线
于点
.
如图①,当点
在线段
上时,求证:
. 
在
的条件下,判断
这三个角的度数和是否为一个定值? 如果是,求出这个值,如果不是,说明理由.
如图②,当点
在线段
的延长线上时,(2)中的结论是否仍然成立?如果不成立, 请直接写出
之间的关系.
)当点
在线段
的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接 写出
之间的关系.
相关试题