【题目】某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )
![]()
A.8.1米 B.17.2米 C.19.7米 D.25.5米
参考答案:
【答案】A.
【解析】
试题分析:作BF⊥AE于F,如图所示,则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:
,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AEtan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选A.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,把点P(-1,-2)向上平移4个单位长度所得点的坐标是___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】学科内综合题:现把10个数:﹣1,23,15,12,0,﹣31,﹣11,29,43,﹣62.分别写在10张纸条上,然后把纸条放进外形,颜色完全相同的小球内,再把这10个小球放进一个大玻璃瓶中,从中任意取一球,得到正数的可能性与得到负数的可能性哪个大.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数
的图象与反比例函数
(
为常数,且
)的图象都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式;
(2)设一次函数
的图象与x轴交于点B,若点P是x轴上一点,且满足△ABP的面积是2,直接写出点P的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD内接于⊙O,如图所示,在劣弧
上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:(1)四边形EBFD是矩形;
(2)DG=BE.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在
的中点,连接AF并延长与CB的延长线相交于点G,连接OF.(1)求证:OF=
BG;(2)若AB=4,求DC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠B=90°,tan∠C=
,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是( )
A.18cm2 B.12cm2 C.9cm2 D.3cm2
相关试题