【题目】如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=
CD,求证:∠AEF=90°.
![]()
参考答案:
【答案】证明见解析.
【解析】试题分析:利用正方形的性质得出AB=BC=CD=DA,∠B=∠C=∠D=90°,设出边长为a,进一步利用勾股定理求得AE、EF、AF的长,再利用勾股定理逆定理判定即可.
试题解析:证明:∵ABCD为正方形,∴AB=BC=CD=DA,∠B=∠C=∠D=90°.设AB=BC=CD=DA=a.∵E是BC的中点,且CF=
CD,∴BE=EC=
a,CF=
a.在Rt△ABE中,由勾股定理可得:AE2=AB2+BE2=
a2,同理可得:EF2=EC2+FC2=
a2,AF2=AD2+DF2=
a2.∵AE2+EF2=AF2,∴△AEF为直角三角形,∴∠AEF=90°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数 y=
(a为常数)的图象上有三点(﹣4,y1),(﹣1,y2),(2,y3),则函数值y1 , y2 , y3的大小关系是( )
A.y3<y1<y2
B.y3<y2<y1
C.y1<y2<y3
D.y2<y3<y1 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线l1:y=
(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线l1向上平移得到l2 , 过点A作AB⊥x轴交抛物线l2于点B,如果由抛物线l1、l2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线l2的函数表达式为( )
A.y=
(x﹣2)2+4
B.y=
(x﹣2)2+3
C.y=
(x﹣2)2+2
D.y=
(x﹣2)2+1 -
科目: 来源: 题型:
查看答案和解析>>【题目】一个口袋中有1个黑球和若干个白球,这些球除颜色外其他都相同.已知从中任意摸取一个球,摸得黑球的概率为
.
(1)求口袋中白球的个数;
(2)如果先随机从口袋中摸出一球,不放回,然后再摸出一球,求两次摸出的球都是白球的概率.用列表法或画树状图法加以说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD中,DE⊥AB于E,DF⊥BC于F.
(1)求证:△ADE≌△CDF;
(2)若∠EDF=50°,求∠BEF的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O为矩形ABCD对角线的交点,DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形.
(2)若AB=6,BC=8,求四边形OCED的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,动点P从点A出发沿AD方向向点D以1cm/s的速度运动,动点Q从点C开始沿着CB方向向点B以3cm/s的速度运动.点P、Q分别从点A和点C同时出发,当其中一点到达端点时,另一点随之停止运动.
(1)经过多长时间,四边形PQCD是平行四边形?
(2)经过多长时间,四边形PQBA是矩形?
(3)经过多长时间,当PQ不平行于CD时,有PQ=CD.

相关试题