【题目】如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.![]()
(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?
参考答案:
【答案】
(1)
解:DF=DE.理由如下:
![]()
如答图1,连接BD.
∵四边形ABCD是菱形,
∴AD=AB.
又∵∠DAB=60°,
∴△ABD是等边三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠DAF=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.∵在△ADF与△BDE中,
,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(2)
解:DF=DE.理由如下:
![]()
如答图2,连接BD.∵四边形ABCD是菱形,
∴AD=AB.
又∵∠DAB=60°,
∴△ABD是等边三角形,
∴AD=BD,∠ADB=60°,
∴∠DBE=∠DAF=60°
∵∠EDF=60°,
∴∠ADF=∠BDE.
∵在△ADF与△BDE中,
,
∴△ADF≌△BDE(ASA),
∴DF=DE;
(3)
解:
![]()
由(2)知,DE=DF,又∵∠EDF=60°,
∴△DEF是等边三角形,
∵四边形ABCD是边长为2的菱形,
∴DH=
,
∵BF=CE=x,
∴AF=x﹣2,
∴FH=AF+AH=x﹣2+1=x﹣1,
∴DF=
=
,DG=
×
,
∴y=S△DEF=
×EF×DG=
×
×
×
=
(x﹣1)2+
.
∴当x=1时,y最小值=
.
【解析】(1)如答图1,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE;
(2)如答图2,连接BD.根据题干条件首先证明∠ADF=∠BDE,然后证明△ADF≌△BDE(ASA),得DF=DE;
(3)根据(2)中的△ADF≌△BDE得到:△DEF是等边三角形,AF=BE.所以要表示△DEF的面积需要用含x的代数式把底EF和高DG表示出来.据此列出y关于x的二次函数,通过求二次函数的最值来求y的最小值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】李老师家距学校1900米,某天他步行去上班,走到路程的一半时发现忘带手机,此时离上班时间还有23分钟,于是他立刻步行回家取手机,随后骑电瓶车返回学校.已知李老师骑电瓶车到学校比他步行到学校少用20分钟,且骑电瓶车的平均速度是步行速度的5倍,李老师到家开门、取手机、启动电瓶车等共用4分钟.
(1)求李老师步行的平均速度;
(2)请你判断李老师能否按时上班,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D,再分别以点C、D为圆心,大于
CD的长为半径画弧,两弧在∠AOB内部交于点E,作射线OE,连接CD.以下说法错误的是( )
A. △OCD是等腰三角形 B. 点E到OA、OB的距离相等
C. CD垂直平分OE D. 证明射线OE是角平分线的依据是SSS
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以O为坐标原点在正方形网格中建立直角坐标系,若每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).
(1)试在y轴上找一点P,使PC+PB的值最小,请在图中标出P点的位置(留下作图痕迹),并求出PC+PB的最小值;
(2)将△ABC先向下平移3个单位,再向右平移4个单位后得到△A1B1C1,请在图中画出△A1B1C1,并写出点A1的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且AD=DE.
(1)试判断△ABE的形状并说明理由;
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?


把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点
处,即
,据以上操作,易证明
≌
,所以
,又因为
>∠B,所以∠C>∠B.感悟与应用:
(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;
(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求证:∠B+∠D=180°;
② 求AB的长.


相关试题