【题目】阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?
![]()
![]()
把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点
处,即
,据以上操作,易证明
≌
,所以
,又因为
>∠B,所以∠C>∠B.
感悟与应用:
(1)如图(a),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;
(2)如图(b),在四边形ABCD中,AC平分∠BAD,AC=16,AD=8,DC=BC=12,
① 求证:∠B+∠D=180°;
② 求AB的长.
![]()
![]()
参考答案:
【答案】(1)BC-AC=AD;(2)①见解析;②14;
【解析】
(1)在CB上截取CE=CA,连接DE.可证△ACD≌△ECD,得到DE=AD,∠A=∠CED=60°,进一步得到∠CED=2∠CBA,由外角的性质得到∠CBA=∠BDE,由等角对等边得到DE=BE,即可得到结论.
(2)①在AB上截取AE=AD,连接EC.易证△CDA≌△CEA,从而得到∠CEA=∠D,CE=CD.由等量代换得到BC=CE,由等边对等角得到∠B=∠CEB.再由邻补角的性质即可得到结论;
②过C作CF⊥AB于F.设FB=x,CF=h.由等腰三角形三线合一得到FE=BF=x.在Rt△BFC和Rt△FCA中,分别利用勾股定理列方程,求解即可.
(1)BC-AC=AD.理由如下:
如图,在CB上截取CE=CA,连接DE.
∵CD平分∠ACB,同理可证△ACD≌△ECD,∴DE=AD,∠A=∠CED=60°.
∵∠ACB=90°,∴∠CBA=30°,∴∠CED=2∠CBA.
∵∠CED=∠CBA+∠BDE,∴∠CBA=∠BDE,∴DE=BE,∴AD=BE.
∵BE=BC-CE=BC-AC,∴BC-AC=AD.
![]()
![]()
(2)①在AB上截取AE=AD,连接EC.
∵AC平分∠DAB,∴∠EAC=∠DAC.在△CDA和△CEA中,∵EA=DA,∠EAC=∠DAC,AC=AC,∴△CEA≌△CDA,∴∠CEA=∠D,CE=CD.
∵DC=BC,∴BC=CE,∴∠B=∠CEB.
∵∠CEA+∠CEB=180°,∴∠B+∠D=180°;
②过C作CF⊥AB于F.设FB=x,CF=h.
∵CB=CE,CF⊥BE,∴FE=BF=x.在Rt△BFC中,∵BF2+CF2=BC2,∴
①;在Rt△FCA中,
②;解方程组①②得:x=3.∴AB=BF+FE+EA=2×3+8=14.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.

(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由
(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE与DF的数量关系;
(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少? -
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且AD=DE.
(1)试判断△ABE的形状并说明理由;
(2)求△ABC的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D.

(1)求此二次函数解析式;
(2)连接DC、BC、DB,求证:△BCD是直角三角形;
(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在等腰梯形ABCD中,AD∥BC,CA平分∠BCD,∠B=60°,若AD=3,则梯形ABCD的周长为( )

A.12
B.15
C.12
D.15 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE=
,CE=1.则
的长是( ) 
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,A(-1,0),B(1,0),C(0,1),点D为x轴正半轴上的一个动点,点E为第一象限内一点,且CE⊥CD,CE=CD.
(1)试说明:∠EBC=∠CAB ;
(2)取DE的中点F,连接OF,试判断OF与AC的位置关系,并说明理由;
(3)在(2)的条件下,试探索O、D、F三点能否构成等腰三角形,若能,请直接写出所有符合条件的点D的坐标;若不能,请说明理由.

相关试题