【题目】一次函数y=ax+b(a≠0)与二次函数y=ax2+2x+b(a≠0)在同一直角坐标系中的图象可能是( )
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】D
【解析】解:A、由抛物线可知,a>0,得b>0,由直线可知,a<0,b>0,故本选项错误;
B、由抛物线可知,a<0,b>0,由直线可知,a>0,b<0,故本选项错误;
C、由抛物线可知,a<0,b>0,由直线可知,a<0,b<0,故本选项错误;
D、由抛物线可知,a>0,b>0,由直线可知,a>0,b>0,且交y轴同一点,故本选项正确.
所以答案是:D.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.
-
科目: 来源: 题型:
查看答案和解析>>【题目】永州市在进行“六城同创”的过程中,决定购买
两种树对某路段进行绿化改造,若购买
种树2棵,
种树3棵,需要2700元;购买
种树4棵,
种树5棵,需要4800元.(1)求购买
两种树每棵各需多少元?(2)考虑到绿化效果,购进A种树不能少于48棵,且用于购买这两种树的资金不低于52500元.若购进这两种树共100棵.问有哪几种购买方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
经过
两点.
(1)求抛物线的解析式和顶点坐标;
(2)设点
为抛物线上一点,若
,求点
的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某景区有一片树林,不仅树种相同,而且排列有序,如果用平面直角坐标系来表示每一棵的具体位置,从第一棵树开始依次表示为(1,0)→(2,0)→(2,1)→(3,2)→(3,1)→(3,0)→(4.0)→……,则第100棵树的位置是____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列5个结论:
①abc<0;②3a+c>0;③4a+2b+c>0;④2a+b=0;⑤b2>4ac.
其中正确的结论的有( )
A.2个
B.3个
C.4个
D.5个 -
科目: 来源: 题型:
查看答案和解析>>【题目】某同学用10×10的方形网格绘制了遵义市四所初级中学(黑色格点)的位置图.(平方单位)
(1)请在适当的位置建立平面直角坐标系,并根据该平面直角坐标系解答下列问题;
(2)分别写出四所中学所在位置的坐标:一中 ,二中 ,三中 ,四中 ;
(3)分别记一中A、二中B、四中C,移动“三中”的位置于点D(请自行在图中标记),连接A、B、C、D四点组成的四边形ABCD为平行四边形.
①移动后所得D点的坐标是 (写一个点);
②求所得平行四边形ABCD的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在
和
中,
,
,
.
(1)若
三点在同一直线上,连接
交
于点
,求证:
.(2)在第(1)问的条件下,求证:
;(3)将
绕点
顺时针旋转得到图2,那么第(2)问中的结论是否依然成立?若成立,请证明你的结论:若不成立,请说明理由.
相关试题