【题目】为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果绘制成了如图所示的条形统计图,则这组数据的众数和中位数分别是( )![]()
A.40,20
B.11,11
C.11,12
D.11,11.5
参考答案:
【答案】D
【解析】解:由条形图知,约平均用水量最多的是11吨,即众数为11;
100个数据的中位数为第50、51个数据的平均数,即中位数为
=11.5,
所以答案是:D.
【考点精析】本题主要考查了中位数、众数的相关知识点,需要掌握中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.

(1)求证:DC=BD;
(2)求证:DE为⊙O的切线. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.

(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是( )
A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在某市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:
(1)求出所抽取的学生人数,并把条形统计图补充完整;
(2)样本中喜欢B项目的人数百分比是 ,其所在扇形统计图中的圆心角的度数是 ;
(3)已知该校有1 000人,根据样本估计全校喜欢跳绳的人数是多少?


图甲 图乙
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知不等式组
的最小整数解为a,最大整数解为b,则ba=( )
A.
B.﹣8
C.
D.16 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,直线m与直线n垂直相交于O,点A在直线m上运动,点B 在直线n上运动,AC、BC分别是∠BAO和∠ABO的角平分线.
(1)求∠ACB的大小;
(2)如图2,若BD是△AOB的外角∠OBE的角平分线,BD与AC相交于点D,点A、B在运动的过程中,∠ADB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值;
(3)如图3,过C作直线与AB交于F,且满足∠AGO-∠BCF=45°,求证:CF∥OB.

相关试题