【题目】如图,两个同心圆的半径分别为4cm和5cm,大圆的一条弦AB与小圆相切,则弦AB的长为( ) ![]()
A.6cm
B.4cm
C.3cm
D.8cm
参考答案:
【答案】A
【解析】解:如图,连接OC,AO, ![]()
∵大圆的一条弦AB与小圆相切,
∴OC⊥AB,
∴AC=BC=
AB,
∵OA=5cm,OC=4cm,
在Rt△AOC中,AC=
=3cm,
∴AB=2AC=6(cm).
故选A.
【考点精析】掌握切线的性质定理和圆与圆的位置关系是解答本题的根本,需要知道切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径;两圆之间有五种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交.两圆圆心之间的距离叫做圆心距.两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中∠C=90°,∠A=30°,BC=2,点P,Q,R分别是AB,AC,BC上的动点,PQ+PR+QR的最小值是_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,点D为AB边上一点.
(1)求证:AD2+DB2=ED2;
(2)若BC=
,求四边形ADCE的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:有两条边长的比值为
的直角三角形叫“潜力三角形”.如图,在△ABC中,∠B=90°,D是AB的中点,E是CD的中点,DF∥AE交BC于点F.
(1)设“潜力三角形”较短直角边长为a,斜边长为c,请你直接写出
的值为;
(2)若∠AED=∠DCB,求证:△BDF是“潜力三角形”;
(3)若△BDF是“潜力三角形”,且BF=1,求线段AC的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,E、F分别是CD、AB延长线上的点,连结EF,分别交AD、BC于点G、H.若∠1=∠2,∠A=∠C,试说明AD//BC和AB//CD.请完成下面的推理过程,填写理由或数学式:

∵∠1=∠2,∠1=∠AGH(_________)
∴∠2=∠AGH(________)
∴AD//BC(________)
∴∠ADE=∠C(________)
∵∠A=∠C(已知)
∴∠ADE=_______(等量代换)
∴AB//CD(_______)
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
﹣|﹣2|+(
)﹣2﹣20160 . -
科目: 来源: 题型:
查看答案和解析>>【题目】景新中学为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:

(1)在这次问卷调查中,喜欢“科普书籍”出现的频率为;
(2)在扇形统计图中,喜欢“体育书籍”的所占的圆心角度数为;
(3)如果全校共有学生1500名,请估计该校最喜欢“科普书籍”的学生约有人.
相关试题