【题目】如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),连接AP,过点B作BQ⊥AP交CD于点Q,将△BQC沿BQ所在的直线对折得到△BQC′,延长QC′交BA的延长线于点M.![]()
(1)试探究AP与BQ的数量关系,并证明你的结论;
(2)当AB=3,BP=2PC,求QM的长;
(3)当BP=m,PC=n时,求AM的长.
参考答案:
【答案】
(1)
解:AP=BQ.
理由:∵四边形ABCD是正方形,
∴AB=BC,∠ABC=∠C=90°,
∴∠ABQ+∠CBQ=90°.
∵BQ⊥AP,∴∠PAB+∠QBA=90°,
∴∠PAB=∠CBQ.
在△PBA和△QCB中,
,
∴△PBA≌△QCB,
∴AP=BQ;
(2)
解:过点Q作QH⊥AB于H,如图.
∵四边形ABCD是正方形,
∴QH=BC=AB=3.
∵BP=2PC,
∴BP=2,PC=1,
∴BQ=AP=
=
=
,
∴BH=
=
=2.
∵四边形ABCD是正方形,
∴DC∥AB,
∴∠CQB=∠QBA.
由折叠可得∠C′QB=∠CQB,
∴∠QBA=∠C′QB,
∴MQ=MB.
设QM=x,则有MB=x,MH=x﹣2.
在Rt△MHQ中,
根据勾股定理可得x2=(x﹣2)2+32,
解得x=
.
∴QM的长为
;
(3)
解:过点Q作QH⊥AB于H,如图.
∵四边形ABCD是正方形,BP=m,PC=n,
∴QH=BC=AB=m+n.
∴BQ2=AP2=AB2+PB2,
∴BH2=BQ2﹣QH2=AB2+PB2﹣AB2=PB2,
∴BH=PB=m.
设QM=x,则有MB=QM=x,MH=x﹣m.
在Rt△MHQ中,
根据勾股定理可得x2=(x﹣m)2+(m+n)2,
解得x=m+n+
,
∴AM=MB﹣AB=m+n+
﹣m﹣n=
.
∴AM的长为
.
![]()
【解析】(1)要证AP=BQ,只需证△PBA≌△QCB即可;(2)过点Q作QH⊥AB于H,如图.易得QH=BC=AB=3,BP=2,PC=1,然后运用勾股定理可求得AP(即BQ)=
,BH=2.易得DC∥AB,从而有∠CQB=∠QBA.由折叠可得∠C′QB=∠CQB,即可得到∠QBA=∠C′QB,即可得到MQ=MB.设QM=x,则有MB=x,MH=x﹣2.在Rt△MHQ中运用勾股定理就可解决问题;(3)过点Q作QH⊥AB于H,如图,同(2)的方法求出QM的长,就可得到AM的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的方程x2+4x+k=0有实数根,则k的取值范围是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论: ①DG=DF; ②四边形EFDG是菱形; ③
;④当
时,BE的长为
,其中正确的结论个数是( )
A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知,如图(1),
为⊙
的割线,直线
与⊙
有公共点
, 且
,(1)求证:
; 直线
是⊙
的切线;(2)如图(2) , 作弦
,使
连接AD、BC,若
,求⊙
的半径;(3)如图(3),若⊙
的半径为
,
,
,
,⊙
上是否存在一点
, 使得
有最小值?若存在,请求出这个最小值;若不存在,说明理由。


-
科目: 来源: 题型:
查看答案和解析>>【题目】若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )
A.矩形
B.菱形
C.对角线互相垂直的四边形
D.对角线相等的四边形 -
科目: 来源: 题型:
查看答案和解析>>【题目】平移只会改变图形的__________
-
科目: 来源: 题型:
查看答案和解析>>【题目】从正面看、从上面看、从左面看都是正方形的几何体是___________.
相关试题